Refine Your Search

Topic

Author

Search Results

Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Journal Article

Transient Thermal Modeling of Power Train Components

2012-04-16
2012-01-0956
This paper discusses simplified lumped parameter thermal modeling of power train components. In particular, it discusses the tradeoff between model complexity and the ability to correlate the predicted temperatures and flow rates with measured data. The benefits and problems associated with using a three lumped mass model are explained and the value of this simpler model is promoted. The process for correlation and optimization using modern software tools is explained. Examples of models for engines and transmissions are illustrated along with their predictive abilities over typical driving cycles.
Journal Article

Stress Analysis of the Separator in a Lithium-Ion Battery

2011-04-12
2011-01-0670
A separator is a membrane that prevents the physical contact between the positive and negative electrodes while enabling ionic transport. The integrity of the separator is vital to the performance and reliability of a battery. This paper presents finite element stress analysis for the separator in a lithium-ion battery using a macro-scale battery cell model. In this model, the porous electrodes were treated as homogenized media and represented with the effective properties estimated using the rule of mixtures. To compute the deformation due to lithium (Li) intercalation & deintercalation and temperature variation, the Li concentration distribution and temperature change due to electrochemical reactions must be known. These parameters were computed using a multi-physics model in COMSOL and mapped to the macro-scale model in ANSYS. Numerical simulations were conducted to identify the locations and magnitudes of the maximum strain and stress of the separator in the pouch cell.
Technical Paper

An Electronically Tunable Resonator for Noise Control

2001-04-30
2001-01-1615
Many engineering systems create unwanted noise that can be reduced by the careful application of engineering noise controls. When this noise travels down tubes and pipes, a tuned resonator can be used to muffle noise escaping from the tube. The classical examples are automobile exhaust and ventilation system noise. In these cases where a narrow frequency band of noise exists, a traditional engineering control consists of adding a tuned Helmholtz resonator to reduce unwanted tonal noise by reflecting it back to the source (Temkin, 1981). As long as the frequency of the unwanted noise falls within the tuned resonator frequency range, the device is effective. However, if the frequency of the unwanted sound changes to a frequency that does not match the tuned resonator frequency, the device is no longer effective. Conventional resonators have fixed tuning and cannot effectively muffle tonal noise with time-varying frequency.
Technical Paper

The Effect of Loading Rate on the Degree of Acute Injury and Chronic Conditions in the Knee After Blunt Impact

2000-11-01
2000-01-SC20
Lower extremity injuries due to automobile accidents are often overlooked, but can have a profound societal cost. Knee injuries, for example, account for approximately 10% of the total injuries. Fracture of the knee is not only an acute issue but may also have chronic, or long term, consequences. The criterion currently used for evaluation of knee injuries in new automobiles, however, is based on experimental impact data from the 70''s using seated human cadavers. These studies involved various padded and rigid impact interfaces that slightly alter the duration of contact. Based on these data and a simple mathematical model of the femur, it appears fracture tolerance increases as contact duration shortens. In contrast, more recent studies have shown mitigation of gross fractures of the knee itself using padded interfaces. The use of padded interfaces, however, result in coincidental changes in contact duration and knee contact area.
Technical Paper

Quantification of primary flows of a torque converter using laser doppler velocimetry

2000-06-12
2000-05-0106
All modern automotive automatic transmissions require the use of a torque converter to allow for the transmission of torque from the engine to the drivetrain. Although they are commonly used throughout the automotive industry, there is little understanding of the internal flows within the torque converter. An experimental study has been conducted to reveal the internal flow characteristics within a production torque converter using Laser Doppler Velocimetry (LDV) under the operating conditions. LDV measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades. The study showed that the internal flow is highly complex and the difference in rotor speeds between the impeller and turbine compound the flow effects. Transmission oil flows in the planes at the impeller exit and gap region were affected by the turbine blade as it passed.
Technical Paper

Numerical Optimization of Ring-Pack Behavior

1999-05-03
1999-01-1521
The ring-pack behavior in a modern gasoline engine represent complicated phenomena. The process of ring pack design consists of two stages: understanding the physical behavior and design synthesis on the systematic manner. Computer models give an inside on the physical processes associated with the ring-pack behavior. Mathematical optimization techniques provide the tools for design synthesis on the systematic way based on an optimal criteria. The mathematical optimization technique was developed and applied to ring pack design synthesis. When applied to the existing engine ring-pack designs, the optimized results indicated the potential for significant reduction in blow-by through the ring-pack by optimizing ring pack geometry. The optimization results were compared with the original ring pack designs for two gasoline engines for a wide range of operating conditions.
Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
Technical Paper

The Car as a Peripheral, Adapting a Portable Computer to a Vehicle Intranet

1998-10-19
98C030
This paper discusses the feasibility and issues associated with integrating a consumer off-the shelf product into a vehicle. For this evaluation, we selected a handheld personal computer (HPC), cellular telephone and modem to integrate with the vehicle audio, climate and system controls. Connectivity between the HPC and the vehicle is established by the use of the standard infrared serial data link that comes with the HPC. Connectivity outside the vehicle uses a cellular telephone for voice and a cellular digital packet data (CDPD) modem for data. This system is built into the Dodge ESX-2 hybrid powered concept vehicle for demonstration.
Technical Paper

The Effect of the Internet on Electric-Drive Vehicle Choices

1998-10-19
98C057
The rapid growth of information technology has the potential to affect many of the reasons why people drive. The Internet is arguably the most significant recent milestone in the growth of information technology. This paper examines the ways Internet communication might affect the travel experience by a) eliminating traditional reasons for personal travel, b) providing new reasons, c) changing the balance between personal and freight travel, and d) changing trip length distribution. Changes of the types listed could affect the product demand "mix" for electric, hybrid-electric and fuel cell vehicles being developed.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Attenuation of Engine Torsional Vibrations Using Tuned Pendulum Absorbers

1997-05-20
971961
In this paper results are presented from a study that investigates the use of centrifugally driven pendulum vibration absorbers for the attenuation of engine torsional vibrations. Such absorbers consist essentially of movable counterweights whose center of mass is restricted to move along a specified path relative to the rotational frame of reference. These devices are commonly used in light aircraft engines and helicopter rotors. The most common designs use a circular path for the absorber, tuned to a particular order of rotor disturbance, although more recent developments offer a wider variety of paths. Our goal here is to evaluate the system performance for a range of path types with different types of tuning. This analytical study is carried out for a simple mechanical model that includes a rotor and an absorber riding along a quite general path. Approximate solutions are obtained using a perturbation scheme and compared with detailed computational results.
Technical Paper

Panel Contribution Study: Results, Correlation and Optimal Bead Pattern for Powertrain Noise Reduction

1997-05-20
971953
To understand how the passenger compartment cavity interacts with the surrounding panels (roof, windshield, dash panel, etc) a numerical panel contribution analysis was performed using FEA and BEA techniques. An experimental panel contribution analysis was conducted by Reiter Automotive Systems. Test results showed good correlation with the simulation results. After gaining some insight into panel contributions for power train noise, an attempt was made to introduce beads in panels to reduce vibration levels. A fully trimmed body structural-acoustic FEA model was used in this analysis. A network of massless beam elements was created in the model. This full structural-acoustic FEA model was then used to determine the optimal location for the beads, using the added beams as optimization variables.
Technical Paper

A CAE Methodology for Reducing Rattle in Structural Components

1997-05-20
972057
Squeak and rattle has become a primary source of undesired noise in automobiles due to the continual diminishment of engine, power train and tire noise levels. This article presents a finite-element-based methodology for the improvement of rattle performance of vehicle components. For implementation purposes, it has been applied to study the rattle of a glove compartment latch and corner rubber bumpers. Results from the glove compartment study are summarized herein. Extensions to other rattle problems are also highlighted.
Technical Paper

Development of a Comparison Index and a Database for Sea Model Results

1997-05-20
972008
This study analyzes methods of comparing SEA model results with experimental results for key traits. These qualitative traits provide the basis for correlation of model results with experimental results through the development of a comparison index. This paper formulates a comparison index and illustrates the application to SEA models. A customized data structure was designed around the comparison index to store all necessary aspects of the modeling, experiment and comparison results. This data structure was then implemented using relational database software. These new tools; the comparison index and the SEA database, will create a common language and a forum for SEA model results that will aid and stimulate dialog in the SEA modeling community and in tern, advance the science of SEA modeling.
Technical Paper

Performance Measurements and Detailed Flow Field Observations for a Light Truck Cooling Fan

1997-05-19
971794
Cooling fan performance: pressure rise, flow rate, shaft power have been acquired. The control variables for these measurements include the fan rprn and the relative immersion of the fan into the shroud. In addition tuft visualizations and hot-wire anemometry have been used to visualize and measure the velocity field in the wake of the fan. The velocity measurements have been processed to provide phase averaged mean and RMS fluctuation levels. The mean values have been differentiated to provide the phase averaged streamwise vorticity magnitudes. The data are used to gain an understanding of the fluid mechanical attributes of the flow field, as well as to provide experimental results for comparison with computational investigations.
Technical Paper

Modeling the Lower Torso of Hybrid III Dummy

1997-04-08
971528
A finite element model for hybrid III dummy's lower torso is presented. All details of the dummy's knee structure are carefully considered. In order to justify the finite element model, numerical results are made to compare with the experimental results from both knee impact test and knee slider impact test. It is found that the finite element results agree very well with their experimental counterparts.
Technical Paper

Advancements in RRIM Fascia Application Provide Cost Competitiveness While Meeting Performance Requirements

1997-02-24
970482
The commercial validation of a optimized RRIM polyurethane substrate with a novel barrier coat for fascia applications is reviewed which creates cost competitiveness to thermoplastic olefins (TPO), without sacrificing performance. Meeting fascia performance requirements with thinner and lighter RRIM materials containing recyclate and the subsequent application of a barrier coat eliminating the traditional primecoat cycle was investigated.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
X