Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

2019-01-09
2019-26-0178
Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Journal Article

Role of Predictive Engineering in the Design Evolution of a Thermoplastic Fender for a Compact SUV

2011-04-12
2011-01-0768
Automotive fenders is one such example where specialized thermoplastic material Noryl GTX* (blend of Polyphenyleneoxide (PPO) + Polyamide (PA)) has successfully replaced metal by meeting functional requirements. The evolution of a fender design to fulfill these requirements is often obtained through a combination of unique material properties and predictive engineering backed design process that accounts for fender behavior during the various phases of its lifecycle. This paper gives an overview of the collaborative design process between Mitsubishi Motors Corporation and SABIC Innovative Plastics and the role of predictive engineering in the evolution of a thermoplastic fender design of Mitsubishi Motors Corporation's compact SUV RVR fender launched recently. While significant predictive work was done on manufacturing and use stage design aspects, the focus of this paper is the design work related to identifying support configuration during the paint bake cycle.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

2011-04-12
2011-01-0051
Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

On Low-Frequency Pressure Pulsations and Static Pressure Distribution in Open Jet Automotive Wind Tunnels

1999-03-01
1999-01-0813
Avoiding low-frequency pressure pulsations and establishing a good axial static pressure distribution are primary concerns for open jet wind tunnels. The current research was conducted to ensure the full scale Chrysler Aero-Acoustic Wind Tunnel (AAWT) design is consistent with good performance in these two areas. Experiments were conducted in two tunnels: a 1/3.6-scale closed-circuit tunnel and a 1/12-scale open-loop tunnel. Results from both are consistent, and a configuration that exhibits i) minimal pulsations for both empty test section and 15% vehicle blockage and ii) a good axial static pressure distribution has been identified for the AAWT. The results illustrate the effect of open jet length, collector geometry, and plenum geometry on pulsation levels and highlight the spatial variation of the pulsation levels within the plenum chamber. Pulsation levels were observed to increase with increasing open jet length and decreasing collector throat area.
Technical Paper

Variation in Autobody Adhesive Curing Process

1999-03-01
1999-01-0997
Adhesive joining is a common autobody subassembly technique especially for outer panels, where visible spot welding is objectionable. To accommodate mass production with the use of certain adhesives very high thermal gradient usually exists, which may result in panel dimensional distortion and variation. The temperature distribution over location and over time are monitored, and its impact to panel dimension is investigated. Experimental results on the effect of the distance between panel and induction coil on the panel temperature is obtained. The thermal induced shape distortion is simulated with a simplified FEA model. The approach to improvement of the induction curing process is discussed.
Technical Paper

Development and Application of Enhanced Compacted Graphite Iron for the Bedplate of the New Chrysler 4.7 Liter V-8 Engine

1999-03-01
1999-01-0325
For the new 4.7 L, V-8 engine, which was introduced in the all new 1999 Jeep Grand Cherokee, Chrysler product engineers found they needed a bedplate material that was significantly stronger and stiffer than gray iron to help meet engine weight requirements. The material also had to provide good NVH characteristics, be cost effective, and machinable. Intermet Corporation, the casting supplier, wanted a material that was significantly tougher than gray iron, would cast sound in complex sections, and which could be reliably produced on a cost effective basis. This paper presents an overview of the development, properties, casting practices, and engine validation of enhanced compacted graphite iron, a material specifically developed and tailored for the bedplate of the new 4.7 liter engine.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Global Regulatory Harmonization-One American Manufacturer's Perspective

1998-09-29
982266
This paper presents one American vehicle manufacturer's perspective on global regulatory harmonization, which is critically required for the future development and well being of the vehicle global market. The paper provides a brief overview of the past and present harmonization efforts and discusses some of the impediments in achieving agreements among different rulemaking bodies. Despite the often hampered goal of total harmonization, the paper submits that progress can be achieved with the reciprocal acceptance of functionally equivalent standards and other stop-gap measures to curb the ever spiraling requirements. The paper concludes on an optimistic note by citing some of the recent developments that bring the harmonization frontier closer to becoming a reality.
Technical Paper

The Process Assurance Body Build Systems Tooling Build / Plate Build What are the Benefits?

1998-09-29
982404
An assessment of Body-In-White quality and launch preparedness occurs at many intervals. This paper will focus on dimensional control activities that take place during the first pre-production pilot phase known as P0. (P-zero occurs approximately 35 weeks before volume production.) Two Process Assurance Body Build Systems (Tooling Build and Plate Build) have been used at Chrysler and the results have been documented. The Plate Build and Tooling Build activities provide the opportunity to uncover and resolve Product Design and Part Quality Issues. In addition, the Tooling Build process has proven to be an objective method of identifying and correcting tooling, gaging and process issues during the P0 Vehicle Build Program.
Technical Paper

Implementing Class A Multiplexing Functions with Industry Standard Components

1998-08-11
981896
Multiplexing systems have been used in automobiles for the past decade. The use of these systems has allowed manufacturers to reduce wiring harness size, eliminate redundant sensors, and achieve a level of communication not available before. While most applications of multiplexing have been inter-modular communication, there exist many more opportunities to utilize multiplexing. These opportunities include multiplexing various user activated/interacted switches, sensors, and actuators. Multiplexing of this type is defined by the SAE as a low speed sensor/actuator bus, or Class “A” bus. The Class “A” bus addresses issues, such as: the challenge of handling increasing wiring complexity, incorporating diagnostics and testability into automotive electronic designs, facilitating the use of new switch and actuator technologies, and allowing a higher degree of systems design flexibility.
Technical Paper

A Reliability Engineering Process in a Simultaneous Engineering Environment

1998-02-23
980738
Rapid change is a way of life in Chrysler. Facing increasing competition, we realize that the traditional practices are no longer sufficient. Accordingly, a new process using simultaneous engineering (SE) teams in conjunction with reliability tools has been used to design and develop a new family of Chrysler engines. These SE teams include representatives from engine engineering, vehicle platform engineering, electrical engineering, manufacturing, reliability & service engineering, finance and suppliers. The SE teams maximize the use of up-front engineering tools, such as Finite Element Analysis (FEA), Digital Model Assembly (DMA), Variation Simulation Analysis (VSA) and Rapid Prototyping with StereoLithography (SLA), Laminated Object Manufacturing (LOM), etc. The new process combines these up-front engineering activities and the appropriate reliability testing as an integral part of the reliability growth process. It enhances the design decisions made with reliability.
Technical Paper

Advanced Three-Way Converter System for High Temperature Exhaust Aftertreatment

1997-02-24
970265
An advanced three-way converter system with significant improvements in light-off performance, conversion efficiency, thermal stability and physical durability at high operating temperature is described. The converter system is comprised of a light-weight ceramic substrate with high surface area triangular cell structure, a new catalyst formulation with enhanced thermal stability and good substrate compatibility, and a durable packaging design which together lead to consistent improvements in high temperature performance and durability. Experimental data including FTP performance, canning trials, and high temperature vibration and thermal shock tests for both the advanced and standard three-way converter systems are presented.
Technical Paper

The ERDA/Chrysler Upgraded Gas Turbine Engine Objectives and Design

1976-02-01
760279
Under a contract which began in November 1972, Chrysler Corporation has been conducting an automotive gas turbine improvement program for the Division of Transportation of the Energy Research and Development Administration. The final task of this program is to design, build, and demonstrate an Upgraded Engine. The design been accomplished and is described in this paper. It utilizes a number of improvements developed and verified on the Chrysler Sixth Generation “Baseline” engines, e.g. variable inlet guide vanes, water injection, ceramic regenerators, an integrated electronic control system, a free-rotor arrangement, a low emissions fixed geometry burner, and linerless insulation. Aerodynamic details to meet higher efficiency component specifications were provided by NASA Lewis. The design also incorporates a gas bearing on the rotor and improvements in arrangement and mechanical design.
X