Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced BEV Battery Pack Thermal Simulation Model Development & Co-relation with Physical Testing

2021-09-15
2021-28-0138
Battery Thermal management is a major challenge for occupant safety in an electric vehicle. Predicting the battery electrical losses and thermal behaviour is another challenge for the battery management system. Different virtual models are developed for cell level and pack level thermal evaluation. All these models have a varying degree of accuracy and limitation. The latest developed model is more accurate and can predict the battery cell & pack level temperatures. The battery can be modeled in different ways, ECM (Electrochemical model), EIS (Electrochemical Impedance Spectroscopy) [1]. Newman model is a well-known electrochemical model. [2]. EIS uses a combination of DC and small AC signal [3,4]. ECM model also used for estimating SOC and in BMS [5]. The cell temperature in the battery pack not only depends upon the cell inside physics but also depends upon cell outside cooling physics. Cell outside physics is simulated by 3D CFD software during the design process [6].
Technical Paper

Development of a CAE Method for Predicting Solar Loading Impact for Electrical System Performance in an Automotive Cabin

2018-04-03
2018-01-0785
A number of market factors such as customer demand for improved connectivity and infotainment systems, automated driver assist systems and electrification of powertrain have driven an increase in the number of electrical systems within the cabin of automotive vehicles. These systems have limited operating temperature windows, therefore markets with high ambient temperatures and solar loading represent a significant challenge due to high cabin temperatures. Traditionally climatic facilities have been used replicate the conditions seen in these markets in order to understand the performance of the electrical systems. However such facilities have a number of limitations such as fixed solar arrays, secondary radiation from the walls and substantial operating costs limiting testing to envelope tests. Therefore the requirement for CAE based approach to more accurately represent the conditions seen in the real world is clear.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

The Cyclic Strain Life Physical Test Correlation Using CAE

2016-04-05
2016-01-1369
Fatigue life predictions using the strain-life method are used in the design of modern light weight vehicle, for the complex loading that occur with the structural durability tests that these vehicles undergo. The accuracy of these predictions is dependent upon the many factors; geometry, loads & materials etc. This paper details a new procedure to ensure the quality and accuracy of the material parameters for the fatigue life prediction software. The material parameters for the solver are obtained by performing strain-controlled fatigue tests. The geometry of the coupons tested is determined by size and thickness of the material specimen that they are machined from and the loading regime in the test. Detailed data analyzed is conducted on these tests and the parameters that are used as input into the CAE strain-life fatigue prediction software are generated.
Technical Paper

Common Automobile Program to Improve Mass Transportation

2016-04-05
2016-01-0154
This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
Technical Paper

Hardware-in-Loop for all Types of Hybrid Vehicles using Open Modular Hardware to Meet ISO 26262 Standard

2014-04-01
2014-01-0292
Hardware-in-the-Loop (HIL) simulation is a technique used extensively in the development and testing of complex real-time embedded systems. Most of the HILs built around the world focus on specific part of a vehicle. This paper describes an in house HIL system developed for the complete hybrid car. In this HIL, the focus was to have HIL based on open hardware which is low cost and modular. It is customizable as per complex interdisciplinary vehicle requirements from Original Equipment Manufacturer that reduces dependency on suppliers and allows testing in an integrated vehicle environment. Code for operating HIL is developed in house. This HIL allows engineers to access ECU and plant model simultaneously and generate test report automatically. It consists of a vehicle plant model developed using MathWorks® Tool chain-MATLAB and Simulink. FPGA Plugin consist of software implementation of vehicle sensors in LabVIEW™ software from National Instruments (NI).
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Ultra-Capacitor based Hybrid Energy Storage and Energy Management for Mild Hybrid Vehicles

2014-04-01
2014-01-1882
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultracapacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultracapacitor to the battery through a bi-directional boost dc-dc converter.
Technical Paper

Energy Efficient Routing for Electric Vehicles using Particle Swarm Optimization

2014-04-01
2014-01-1815
Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Journal Article

Online Driveline Fatigue Data Acquisition Method

2013-04-08
2013-01-1270
Two on-line algorithms have been developed to acquire driveline component loads in terms of revolutions at torque and rainflow cycle counting matrix. These algorithms have been implemented in real-time on a standard engine controller unit and have been optimized for fast run-time and low memory requirements. The revolutions at torque algorithm is intended to count the number of driveshaft revolutions in each torque level for each gear and store the number of counts in the engine controller memory. The rainflow cycle counting algorithm is intended to count driveshaft torque cycles and to store the number of counts in a two dimensional “from-to” matrix format in the engine controller memory. The revolutions at torque histogram data and the rainflow cycle counting matrix are then downloaded from the vehicle using the data collection device. Download occurs when the vehicle is serviced at a dealership.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Technical Paper

A New Method of d'Alembert's Principle Finite Element Based Fatigue Calculation with Input of Loads and Accelerations

2013-04-08
2013-01-1003
The common practice in finite element based fatigue calculation with multiple channels of road load is to perform a set of unit load static stress analysis and conduct stress time history construction later during fatigue calculation. The main advantage of this so-called quasi-static finite element based fatigue calculation is to avoid time-consuming dynamic stress analysis and also reduce static stress analysis from millions of real load cases to a few dozens unit-load cases. The main disadvantage of this quasi-static finite element based fatigue calculation is the absence of vibration-induced stresses in stress time history construction and fatigue analysis. A decade ago, a modal transient finite element based fatigue calculation was proposed to introduce vibration-induced stresses into finite element based fatigue calculation. The idea is to add vibration-induced modal stresses to load-induced instant stresses in stress time history construction and fatigue calculation.
Technical Paper

Virtual Road Load Data Acquisition using Full Vehicle Simulations

2013-04-08
2013-01-1189
The concept of full vehicle simulation has been embraced by the automobile industry as it is an indispensable tool for analyzing vehicles. Vehicle loads traditionally obtained by road load data acquisition such as wheel forces are typically not invariant as they depend on the vehicle that was used for the measurement. Alternatively, virtual road load data acquisition approach has been adopted in industry to derive invariant loads. Analytical loads prior to building hardware prototypes can shorten development cycles and save costs associated with data acquisition. The approach described herein estimate realistic component load histories with sufficient accuracy and reasonable effort using full vehicle simulations. In this study, a multi-body dynamic model of the vehicle was built and simulated over digitized road using ADAMS software, and output responses were correlated to a physical vehicle that was driven on the same road.
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

Battery Development for Stop-Start Application in Brazilian Market

2013-04-08
2013-01-1526
There is a growing worldwide concern regarding the environmental aspects related to the performance of a corporation and its products, whether by consumer demand or government requirements. The constant pressure for innovations and improvements related to sustainable development are current issues in everyday life of any institution that seeks to consolidate a position of acceptance and competitiveness in the global market. The automotive industry is one of the markets more involved and challenged to the demand of the environmental requirements in regards the limits of pollutant emissions and consequently fuel consumption. The European and North America vehicles already have more electrical content inside (either related to safety and comfort or even needs related to weather), which results in significantly higher consumption levels than traditionally observed in Brazil's application.
Technical Paper

CAE Simulation of Door Sag/Set Using Subsystem Level Approach

2013-04-08
2013-01-1199
The performance of door assembly is very significant for the vehicle design and door sag/set is one of the important attribute for design of door assembly. This paper provides an overview of conventional approach for door sag/set study based on door-hinge-BIW assembly (system level approach) and its limitation over new approach based on subassembly (subsystem level approach). The door sag/set simulation at system level is the most common approach adopted across auto industry. This approach evaluates only structural adequacy of door assembly system for sag load. To find key contributor for door sagging is always been time consuming task with conventional approach thus there is a delay in providing design enablers to meet the design target. New approach of door sag/set at “subsystem level” evaluates the structural stiffness contribution of individual subsystem. It support for setting up the target at subsystem level, which integrate and regulate the system level performance.
Technical Paper

Development of an Analytical Modeling Method and Testing Procedures to Aid in the Design of Cardan Joints for Front Steerable Beam Axles

2013-04-08
2013-01-0819
The Cardan joint of a steerable beam front axle is a complicated mechanical component. It is subjected to drive torque, speed fluctuations, and joint articulation due to powertrain inputs, steering, and suspension kinematics. This combination of high torque and speed fluctuations of the Cardan joint, due to high input drive torque and/or high steer angle maneuvers, can result in premature joint wear. Initially, some observations of premature wear were not well understood based on the existing laboratory and road test data. The present work summarizes a coordinated program of computer modeling, vehicle Rough Road data acquisition, and physical testing used to predict the joint dynamics and to develop advanced testing procedures. Results indicate analytical modeling can predict forces resulting from Cardan joint dynamics for high torque/high turn angle maneuvers, as represented by time history traces recorded in rough road data acquisition.
Technical Paper

Impact of Functional Safety on EMC: ISO 26262

2013-04-08
2013-01-0178
The complexity of both hardware and software has increased significantly in automotive over the past decade. This is apparent even in the compact passenger car market segment where the presence of electronic control units (ECU) has nearly tripled. In today's luxury vehicles, software can reach 100 million lines of code and are only projected to increase. Without preventive measures, the risk of safety-related system malfunction becomes unacceptably too high. The functional safety standard ISO 26262, released as first edition in 2011, provides crucial safety-related requirements for passenger vehicles. Although the standard defines the proper development for safety-related systems to ensure the avoidance of a hazard, it's implication for electromagnetic compatibility (EMC) is not clearly defined. This paper outlines the impact of ISO 26262 for EMC related issues, and discusses the standard's implications for EMC requirements on the present EMC practices for production vehicles.
X