Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Comparison of a Rotary Valvetrain on the Performance and Emissions of a Light Duty Spark Ignition Engine

2023-10-31
2023-01-1613
Rotary valve technology can provide increased flow area and higher discharge coefficients than conventional poppet valves for internal combustion engines. This increase in intake charging efficiency can improve the power density of four-stroke internal combustion engines, particularly at high engine speeds, where flow is choked through conventional poppet valves. In this work, the valvetrain of a light duty single cylinder spark ignition engine was replaced with a rotary valve train. The impact of this valvetrain conversion on performance and emissions was evaluated by comparing spark timing sweeps with lambda ranging from 0.8 to 1.1 at wide open throttle. The results indicated that the rotary valvetrain increased the amount of air trapped at intake valve closing and resulted in a significantly faster burn duration than the conventional valvetrain.
Technical Paper

Actively Articulated Wheeled Architectures for Autonomous Ground Vehicles - Opportunities and Challenges

2023-04-11
2023-01-0109
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging.
Technical Paper

Traffic Safety Improvement through Evaluation of Driver Behavior – An Initial Step Towards Vehicle Assessment of Human Operators

2023-04-11
2023-01-0569
In the United States and worldwide, 38,824 and 1.35 million people were killed in vehicle crashes during 2020. These statistics are tragic and indicative of an on-going public health crisis centered on automobiles and other ground transportation solutions. Although the long-term US vehicle fatality rate is slowly declining, it continues to be elevated compared to European countries. The introduction of vehicle safety systems and re-designed roadways has improved survivability and driving environment, but driver behavior has not been fully addressed. A non-confrontational approach is the evaluation of driver behavior using onboard sensors and computer algorithms to determine the vehicle’s “mistrust” level of the given operator and the safety of the individual operating the vehicle. This is an inversion of the classic human-machine trust paradigm in which the human evaluates whether the machine can safely operate in an automated fashion.
Technical Paper

Evaluating Drivers’ Understanding of Warning Symbols Presented on In-Vehicle Digital Displays Using a Driving Simulator

2023-04-11
2023-01-0790
Since 1989, ISO has published procedures for developing and testing public information symbols (ISO 9186), while the SAE standard for in-vehicle icon comprehension testing (SAE J2830) was first published in 2008. Neither testing method was designed to evaluate the comprehension of symbols in modern vehicles that offer digital instrument cluster interfaces that afford new levels of flexibility to further improve drivers’ understanding of symbols. Using a driving simulator equipped with an eye tracker, this study investigated drivers’ understanding of six automotive symbols presented on in-vehicle displays. Participants included 24 teens, 24 adults, and 24 senior drivers. Symbols were presented in a symbol-only, symbol + short text descriptions, and symbol + long text description conditions. Participants’ symbol comprehension, driving performance, reaction times, and eye glance times were measured.
Technical Paper

What Makes Passengers Uncomfortable In Vehicles Today? An Exploratory Study of Current Factors that May Influence Acceptance of Future Autonomous Vehicles

2023-04-11
2023-01-0675
Autonomous vehicles have the potential to transform lives by providing transportation to a wider range of users. However, with this new method of transportation, user acceptance and comfort are critical for widespread adoption. This exploratory study aims to investigate what makes passengers uncomfortable in existing vehicles to inform the design of future autonomous vehicles. In order to predict what may impact user acceptance for a diverse rider population for future autonomous vehicles, it is important to understand what makes a broad range of passengers uncomfortable today. In this study, interviews were conducted for a total of 75 participants from three diverse groups, including 20 automotive engineering graduate students who are building an autonomous concept vehicle, 21 non-technical adults, and 34 senior citizens. The results revealed both topics which made different groups of passengers uncomfortable as well as how these varied between the groups.
Technical Paper

Comfort Improvement for Autonomous Vehicles Using Reinforcement Learning with In-Situ Human Feedback

2022-03-29
2022-01-0807
In this paper, a reinforcement learning-based method is proposed to adapt autonomous vehicle passengers’ expectation of comfort through in-situ human-vehicle interaction. Ride comfort has a significant influence on the user’s experience and thus acceptance of autonomous vehicles. There is plenty of research about the motion planning and control of autonomous vehicles. However, limited studies have explicitly considered the comfort of passengers in autonomous vehicles. This paper studies the comfort of humans in autonomous vehicles longitudinal autonomous driving. The paper models and then improves passengers’ feelings about autonomous driving behaviors. This proposed approach builds a control and adaptation strategy based on reinforcement learning using human’s in-situ feedback on autonomous driving. It also proposes an adaptation of humans to autonomous vehicles to account for improper human driving expectations.
Journal Article

Application of a Digital Twin Virtual Engineering Tool for Ground Vehicle Maintenance Forecasting

2022-03-29
2022-01-0364
The integration of sensors, actuators, and real-time control in transportation systems enables intelligent system operation to minimize energy consumption and maximize occupant safety and vehicle reliability. The operating cycle of military ground vehicles can be on- and off-road in harsh weather and adversarial environments, which demands continuous subsystem functionality to fulfill missions. Onboard diagnostic systems can alert the operator of a degraded operation once established fault thresholds are exceeded. An opportunity exists to estimate vehicle maintenance needs using model-based predicted trends and eventually compiled information from fleet operating databases. A digital twin, created to virtually describe the dynamic behavior of a physical system using computer-mathematical models, can estimate the system behavior based on current and future operating scenarios while accounting for past effects.
Technical Paper

Driver Drowsiness Behavior Detection and Analysis Using Vision-Based Multimodal Features for Driving Safety

2020-04-14
2020-01-1211
Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis. First, an infrared camera is deployed in-vehicle to capture the driver’s facial and head information in naturalistic driving scenarios, in which the driver may or may not wear glasses or sunglasses. Second, we propose and design a multi-modal features representation approach based on facial landmarks, and head pose which is retrieved in a convolutional neural network (CNN) regression model. Finally, an extreme learning machine (ELM) model is proposed to fuse the facial landmark, recognition model and pose orientation for drowsiness detection. The DDMS gives promptly warning to the driver once a drowsiness event is detected.
Technical Paper

Experimental Analysis of a Multiple Radiator Cooling System with Computer Controlled Flow Rates

2020-04-14
2020-01-0944
The automotive cooling system configuration has remained fixed for many decades with a large radiator plus fan, coolant pump, and bypass valve. To reduce cooling system power consumption, the introduction of multiple computer-controlled heat exchangers may offer some benefits. A paradigm shift from a single large radiator, sized for maximum load, to n-small radiators with individual flow control valves should allow fine tuning of the heat rejection needs to minimize power. In this project, a series of experimental scenarios featuring two identical parallel radiators have been studied for low thermal load engine cooling (e.g., idling) in ground transportation applications. For high thermal load scenarios using two radiators, the fans required between 1120 - 3600 W to maintain the system about the coolant reference temperature of 85oC.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Evaluation of Alternative Steering Devices with Adjustable Haptic Feedback for Semi-Autonomous and Autonomous Vehicles

2018-04-03
2018-01-0572
Emerging autonomous driving technologies, with emergency navigating capabilities, necessitates innovative vehicle steering methods for operators during unanticipated scenarios. A reconfigurable “plug and play” steering system paradigm enables lateral control from any seating position in the vehicle’s interior. When required, drivers may access a stowed steering input device, establish communications with the vehicle steering subsystem, and provide direct wheel commands. Accordingly, the provision of haptic steering cues and lane keeping assistance to navigate roadways will be helpful. In this study, various steering devices have been investigated which offer reconfigurability and haptic feedback to create a flexible driving environment. A joystick and a robotic arm that offer multiple degrees of freedom were compared to a conventional steering wheel.
Technical Paper

Understanding the Automotive Pedal Usage and Foot Movement Characteristics of Older Drivers

2018-04-03
2018-01-0495
This study was driven by the prevalence of older drivers’ overrepresentation in crashes caused by pedal application errors. Previous research has shown tasks prone to pedal errors, which include emergency braking, parking lot maneuvers and reaching out of the driver’s window. However, pedal usage characteristics of older drivers while performing on-road driving tasks are unknown. The objective of this research was to understand pedal usage characteristics of older drivers during on-road driving tasks in an instrumented vehicle. Twenty-six drivers over the age of 60 completed 10 stopping tasks as the baseline for stopping performance, a startle-braking task, two forward parking tasks and two reaching out of the vehicle tasks. Results for this instrumented vehicle study showed significantly positive correlations between stature and the percent of foot pivoting, and between shoe length and percent of foot pivoting in the baseline stopping tasks.
Technical Paper

On Enhanced Fuzzy Sliding-Mode Controller and Its Chattering Suppression for Vehicle Semi-Active Suspension System

2018-04-03
2018-01-1403
This paper aims to present an enhanced fuzzy sliding-mode control scheme with variable rate reaching law for semi-active vehicle suspension systems, which can reduce chattering phenomena in high frequency compared with the sliding-mode controller with traditional exponent reaching law. First, an ideal-skyhook damping suspension system is taken as reference model; then the new control law is synthesized by employing the fuzzy logic control while considering the sliding-mode reaching segment characteristics, which can dynamically change the reaching rate to suppress chattering in closed-loop control systems; finally, simulation analysis is conducted under both random road and bump road surface, the results verified the effectiveness and feasibility of the proposed control scheme.
Technical Paper

Evaluation of CarFit® Criteria Compliance and Knowledge of Seat Adjustment

2018-04-03
2018-01-1314
Improper fit in a vehicle will affect a driver’s ability to reach the steering wheel and pedals, view the roadway and instrument gauges, and allow vehicle safety features to protect the driver during a crash. CarFit® is a community outreach program to educate older drivers on proper “fit” within their personal vehicle. A subset of measurements from CarFit® were used to quantify the “fit” of 97 older drivers over 60 and 20 younger drivers, ages 30-39, in their personal vehicles. Binary, logistic regression was used to assess the likelihood of drivers meeting the CarFit® measurement criteria prior to and after CarFit® education. The results showed older drivers were five times more likely than younger drivers to meet the CarFit® criteria for line of sight above the steering wheel, suggesting that younger drivers would also benefit from CarFit® education.
Technical Paper

The Ingress and Egress Strategies of Wheelchair Users Transferring Into and Out of Two Sedans

2018-04-03
2018-01-1321
The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. The purpose of the current study is to build upon the previous exploratory study that investigated the transfer strategies of wheelchair users by observing YouTube videos. This observational study videotaped five wheelchair users transferring from their wheelchairs into two research vehicles, a small and mid-size sedan that were equipped with a 50mm grid. The goal of this study was to use these videos and vehicle grids to precisely identify ingress and egress motions as well as “touch points” in a controlled setting with a small sample of five male wheelchair users. Using the videos from multiple different camera perspectives, the participants’ ingress and egress transfers were coded, documenting the touch points and step-by-step action sequences.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Teaching Autonomous Vehicles How to Drive under Sensing Exceptions by Human Driving Demonstrations

2017-03-28
2017-01-0070
Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
Journal Article

Design and Development of a Composite A-Pillar to Reduce Obstruction Angle in Passenger Cars

2017-03-28
2017-01-0501
In modern passenger vehicles, A-pillar plays an important role in its passive safety by minimizing the deformation of passenger compartment during the crash. To meet various crash requirements, as well as sometimes due to demand of vehicle styling, A-pillar cross section of modern vehicles is generally wider. This wider cross section acts as an increased obstruction to the field of vision of the driver. It is considered detrimental for the safety of road users. The current work proposes an innovative design solution to reduce the obstruction angle due to an A-pillar. It also addresses the weight reduction objective. This is done by utilizing the noble properties of Carbon Fiber Reinforced Polymers (CFRP). Carbon Fiber Reinforced Polymers (CFRP) offer flexibility for complex design. Due to high specific strength and stiffness, CFRP's are suitable candidate for design considerations presented in this study.
X