Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Multi-Objective Design Optimization of an Electric Motor Thermal Management System for Autonomous Vehicles

2021-04-06
2021-01-0257
The integration of electric motors into ground vehicle propulsion systems requires the effective removal of heat from the motor shell. As the torque demand varies based on operating cycles, the generated heat from the motor windings and stator slots must be rejected to the surroundings to ensure electric machine reliability. In this paper, an electric motor cooling system design will be optimized for a light duty autonomous vehicle. The design variables include the motor cradle volume, the number of heat pipes, the coolant reservoir dimensions, and the heat exchanger size while the cost function represents the system weight, overall size, and performance. The imposed requirements include the required heat transfer per operating cycle (6, 9, 12kW) and vehicle size, component durability requirement, and material selection. The application of a nonlinear optimization package enabled the cooling system design to be optimized.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
X