Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling & Validation of a Digital Twin Tracked Vehicle

2024-04-09
2024-01-2323
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies.
Technical Paper

A Digital Design Agent for Ground Vehicles

2024-04-09
2024-01-2004
The design of transportation vehicles, whether passenger or commercial, typically involves a lengthy process from concept to prototype and eventual manufacture. To improve competitiveness, original equipment manufacturers are continually exploring ways to shorten the design process. The application of digital tools such as computer-aided-design and computer-aided-engineering, as well as model-based computer simulation enable team members to virtually design and evaluate ideas within realistic operating environments. Recent advances in machine learning (ML)/artificial intelligence (AI) can be integrated into this paradigm to shorten the initial design sequence through the creation of digital agents. A digital agent can intelligently explore the design space to identify promising component features which can be collectively assessed within a virtual vehicle simulation.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Technical Paper

Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

2023-10-31
2023-01-1617
Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements.
Technical Paper

Experimental Comparison of a Rotary Valvetrain on the Performance and Emissions of a Light Duty Spark Ignition Engine

2023-10-31
2023-01-1613
Rotary valve technology can provide increased flow area and higher discharge coefficients than conventional poppet valves for internal combustion engines. This increase in intake charging efficiency can improve the power density of four-stroke internal combustion engines, particularly at high engine speeds, where flow is choked through conventional poppet valves. In this work, the valvetrain of a light duty single cylinder spark ignition engine was replaced with a rotary valve train. The impact of this valvetrain conversion on performance and emissions was evaluated by comparing spark timing sweeps with lambda ranging from 0.8 to 1.1 at wide open throttle. The results indicated that the rotary valvetrain increased the amount of air trapped at intake valve closing and resulted in a significantly faster burn duration than the conventional valvetrain.
Technical Paper

GT-Suite Modeling of Thermal Barrier Coatings in a Multi-Cylinder Turbocharged DISI Engine for Catalyst Light-Off Delay Improvement

2023-10-31
2023-01-1602
Catalytic converters, which are commonly used for after-treatment in SI engines, exhibit poor performance at lower temperatures. This is one of the main reasons that tailpipe emissions drastically increase during cold-start periods. Thermal inertia of turbocharger casing prolongs the catalyst warm-up time. Exhaust enthalpy management becomes crucial for a turbocharged direct injection spark ignition (DISI) engine during cold-start periods to quickly heat the catalyst and minimize cold-start emissions. Thermal barrier coatings (TBCs), because of their low thermal inertia, reach higher surface temperatures faster than metal walls, thereby blocking heat transfer and saving enthalpy for the catalyst. The TBCs applied on surfaces that exchange heat with exhaust gases can increase the enthalpy available for the catalyst warm-up.
Technical Paper

Impact of Active Cooling on the Thermal Management of 3-Level NPC Converter for Hybrid Electric Vehicle Application

2023-10-31
2023-01-1684
The application of power electronic converters (PEC) in electric vehicles (EVs) has increased immensely as they provide enhanced controllability and flexibility to these vehicles. Accordingly, the interest in developing innovative and sustainable technologies to ensure safe and reliable operation of PECs has also risen. One of the most difficult challenges experienced during the development of reliable PECs is the design of proper thermal management systems for controlling the junction temperature and reducing the thermal cycling of power semiconductors. The addition of Active Thermal Control (ATC) can mitigate these concerns. Moreover, the performance of the thermal management system can be enhanced further by the integration of active cooling methods. An active cooling system consumes external energy for circulating cooling air or liquid within the PECs.
Technical Paper

Containerization Approach for High-Fidelity Terramechanics Simulations

2023-04-11
2023-01-0105
Integrated modeling of vehicle, tire and terrain is a fundamental challenge to be addressed for off-road autonomous navigation. The complexities arise due to lack of tools and techniques to predict the continuously varying terrain and environmental conditions and the resultant non-linearities. The solution to this challenge can now be found in the plethora of data driven modeling and control techniques that have gained traction in the last decade. Data driven modeling and control techniques rely on the system’s repeated interaction with the environment to generate a lot of data and then use a function approximator to fit a model for the physical system with the data. Getting good quality and quantity of data may involve extensive experimentation with the physical system impacting developer’s resource. The process is computationally expensive, and the overhead time required is high.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

Utilizing Neural Networks for Semantic Segmentation on RGB/LiDAR Fused Data for Off-road Autonomous Military Vehicle Perception

2023-04-11
2023-01-0740
Image segmentation has historically been a technique for analyzing terrain for military autonomous vehicles. One of the weaknesses of image segmentation from camera data is that it lacks depth information, and it can be affected by environment lighting. Light detection and ranging (LiDAR) is an emerging technology in image segmentation that is able to estimate distances to the objects it detects. One advantage of LiDAR is the ability to gather accurate distances regardless of day, night, shadows, or glare. This study examines LiDAR and camera image segmentation fusion to improve an advanced driver-assistance systems (ADAS) algorithm for off-road autonomous military vehicles. The volume of points generated by LiDAR provides the vehicle with distance and spatial data surrounding the vehicle.
Technical Paper

Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine

2023-04-11
2023-01-0335
Renewable fuels, such as the alcohols, ammonia, and hydrogen, have a high autoignition resistance. Therefore, to enable these fuels in compression ignition, some modifications to existing engine architectures is required, including increasing compression ratio, adding insulation, and/or using hot internal residuals. The opposed-piston two-stroke (OP2S) engine architecture is unique in that, unlike conventional four-stroke engines, the OP2S can control the amount of trapped residuals over a wide range through its scavenging process. As such, the OP2S engine architecture is well suited to achieve compression ignition of high autoignition resistance fuels. In this work, compression ignition with wet ethanol 80 (80% ethanol, 20% water by mass) on a 3-cylinder OP2S engine is experimentally demonstrated. A load sweep is performed from idle to nearly full load of the engine, with comparisons made to diesel at each operating condition.
Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Multiple Heat Exchangers for Automotive Systems - A Design Tool

2022-03-29
2022-01-0180
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Journal Article

Elicitation, Computational Representation, and Analysis of Mission and System Requirements

2022-03-29
2022-01-0363
Strategies for evaluating the impact of mission requirements on the design of mission-specific vehicles are needed to enable project managers to assess potential benefits and associated costs of changes in requirements. Top-level requirements that cause significant cascaded difficulties on lower-level requirements should be identified and presented to decision-makers. This paper aims to introduce formal methods and computational tools to enable the analysis and allocation of mission requirements.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

Autoignition Characterization of Wet Isopropanol-n-Butanol-Ethanol Blends for ACI

2021-09-05
2021-24-0044
In this work, two blends of isopropanol, n-butanol, and ethanol (IBE) that can be produced by metabolically engineered clostridium acetobutylicum are studied experimentally in advanced compression ignition (ACI). This is done to determine whether these fuel blends have the right fuel properties to enable thermally stratified compression ignition, a stratified ACI strategy that using the cooling potential of single stage ignition fuels to control the heat release process. The first microorganism, ATCC824, produces a blend of 34.5% isopropanol, 60.1% n-butanol, and 5.4% ethanol, by mass. The second microorganism, BKM19, produces a blend of 12.3% isopropanol, 54.0% n-butanol, and 33.7% ethanol, by mass. The sensitivity of both IBE blends to intake pressure, intake temperature, and cylinder energy content (fueling rate) is characterized and compared to that of its neat constituents. Both IBE blends behaved similarly with a reactivity level between that of ethanol and n-butanol.
X