Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

2023-10-31
2023-01-1617
Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements.
Technical Paper

Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine

2023-04-11
2023-01-0335
Renewable fuels, such as the alcohols, ammonia, and hydrogen, have a high autoignition resistance. Therefore, to enable these fuels in compression ignition, some modifications to existing engine architectures is required, including increasing compression ratio, adding insulation, and/or using hot internal residuals. The opposed-piston two-stroke (OP2S) engine architecture is unique in that, unlike conventional four-stroke engines, the OP2S can control the amount of trapped residuals over a wide range through its scavenging process. As such, the OP2S engine architecture is well suited to achieve compression ignition of high autoignition resistance fuels. In this work, compression ignition with wet ethanol 80 (80% ethanol, 20% water by mass) on a 3-cylinder OP2S engine is experimentally demonstrated. A load sweep is performed from idle to nearly full load of the engine, with comparisons made to diesel at each operating condition.
Technical Paper

Autoignition Characterization of Wet Isopropanol-n-Butanol-Ethanol Blends for ACI

2021-09-05
2021-24-0044
In this work, two blends of isopropanol, n-butanol, and ethanol (IBE) that can be produced by metabolically engineered clostridium acetobutylicum are studied experimentally in advanced compression ignition (ACI). This is done to determine whether these fuel blends have the right fuel properties to enable thermally stratified compression ignition, a stratified ACI strategy that using the cooling potential of single stage ignition fuels to control the heat release process. The first microorganism, ATCC824, produces a blend of 34.5% isopropanol, 60.1% n-butanol, and 5.4% ethanol, by mass. The second microorganism, BKM19, produces a blend of 12.3% isopropanol, 54.0% n-butanol, and 33.7% ethanol, by mass. The sensitivity of both IBE blends to intake pressure, intake temperature, and cylinder energy content (fueling rate) is characterized and compared to that of its neat constituents. Both IBE blends behaved similarly with a reactivity level between that of ethanol and n-butanol.
Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Journal Article

In-Vehicle Validation of Heavy-Duty Vehicle Fuel Savings via a Hierarchical Predictive Online Controller

2021-04-06
2021-01-0432
This paper presents the evolution of a series of connected, automated vehicle technologies from simulation to in-vehicle validation for the purposes of minimizing the fuel usage of a class-8 heavy duty truck. The results reveal that an online, hierarchical model-predictive control scheme, implemented via the use of extended horizon driver advisories for velocity and gear, achieves fuel savings comparable to predictions from software-in-the-loop (SiL) simulations and engine-in-the-loop (EiL) studies that operated with a greater degree of powertrain and chassis automation. The work of this paper builds on prior work that presented in detail this predictive control scheme that successively optimizes vehicle routing, arrival and departure at signalized intersections, speed trajectory planning, platooning, predictive gear shifting, and engine demand torque shaping.
Technical Paper

Single vs Double Stage Partial Flow Dilution System: Automobile PM Emission Measurement

2020-04-14
2020-01-0366
The US Code of Federal Regulations (CFR) Title 40 Part 1065 and 1066 require gravimetric determination of automobile Particulate Matter (PM) collected onto filter media from the diluted exhaust. PM is traditionally collected under simulated driving conditions in a laboratory from a full flow Constant Volume Sampler (CVS) system, where the total engine exhaust is diluted by HEPA filtered air. This conventional sampling and measurement practice is facing challenges in accurately quantifying PM at the upcoming 2025-2028 CARB LEVIII 1 mg/mi PM emissions standards. On the other hand, sampling a large amount of PM emitted from large size high power engines introduces additional challenges. Applying flow weighting, adjusting the Dilution Ratio (DR) and Filter Face Velocity (FFV) are proposed options to overcome these challenges.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Journal Article

An Electric Motor Thermal Bus Cooling System for Vehicle Propulsion - Design and Test

2020-04-14
2020-01-0745
Automotive and truck manufacturers are introducing electric propulsion systems into their ground vehicles to reduce fossil fuel consumption and harmful tailpipe emissions. The mobility shift to electric motors requires a compact thermal management system that can accommodate heat dissipation demands with minimum energy consumption in a confined space. An innovative cooling system design, emphasizing passive cooling methods coupled with a small liquid system, using a thermal bus architecture has been explored. The laboratory experiment features an emulated electric motor interfaced to a thermal cradle and multiple heat rejection pathways to evaluate the transfer of generated heat to the ambient surroundings. The thermal response of passive (e.g., carbon fiber, high thermal conductivity material, thermosyphon) and active cooling systems are investigated for two operating scenarios.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Technical Paper

Numerical Investigation of an Optical Soot Sensor for Modern Diesel Engines

2009-04-20
2009-01-1514
It has been extensively evidenced that modern diesel engines generate a considerable amount of soot nanoparticles. Existing soot sensors are not suitable for such nanoparticles. Current standard gravimetric techniques are extremely insensitive to fine soot particles. Soot diagnostics developed for research purposes, e.g., laser induced-incandescence, do not provide quantitative characterization, and expanded practical applications of these techniques are hardly conceivable. This paper addresses this emerging need for monitoring nano-sized soot emissions. Here, we investigated the use of polarization modulated scattering (PMS) for soot sensing in engine environments. The technique involves 1) measuring laser scattering by soot particles at multiple angles while varying the polarization states of the incident laser beam, 2) determining multiple elements of the Mueller matrix from the measured signals, and 3) inferring properties of the soot particles from these elements.
Technical Paper

Effects of Tractor and Trailer Torsional Compliance and Fill Level of Tanker Trailers on Rollover Propensity During Steady Cornering

2005-11-01
2005-01-3518
Understanding the parameters which influence the tendency for a heavy truck to exhibit rollover is of paramount importance to the trucking industry. Multiple parameters influence the vehicle’s motion, and the ability to determine how each affects the vehicle as a system would be an indispensable tool for the design of such vehicles. To be able to perform such predictions and analysis, models and a computer simulation were created to allow the examination of changes in design parameters in such vehicles. The vehicle model was originally developed by Law [1] and presented in Law and Janajreh [2]. The model was extended further by Lawson [3, 4] to include (a) the effects of the torsional compliance of both the tractor and trailer, and (b) tanker trailers with various levels of liquid fill. In the present paper, both the tractor and trailer compliances were studied independently to determine their influences on the rollover stability of the vehicle.
Technical Paper

Optimization to Improve Lateral Stability of Tractor Semi-Trailers During Steady State Cornering

2004-10-26
2004-01-2690
Decreasing the propensity for rollover during steady state cornering of tractor semi-trailers is a key advantage to the trucking industry. This will be referred to as “increasing the lateral stability during steady state cornering” and may be accomplished by changes in design and loading variables which influence the behavior of a vehicle. To better understand the effects of such changes, a computer program was written to optimize certain design variables and thus maximize the lateral acceleration where an incipient loss of lateral stability occurs. The vehicle model used in the present investigation extends that developed by Law [1] and presented in Law and Janajreh [2]. The original model included the effects of tire flexibility, nonlinear roll-compliant suspensions, and fifth wheel lash. This model was modified to include (a) additional effects of displacement due to both lateral and vertical tire flexibility, and (b) provisions for determining “off-tracking”.
Technical Paper

Effects of Tire and Vehicle Design Characteristics on Rollover of Tractor Semi-Trailers

2004-03-08
2004-01-1739
Understanding the effects of tire and vehicle properties on the rollover propensity of tractor semi-trailer trucks is essential. The major objective of the project described by this paper was to develop a simplified computational tool that can be used to understand and predict the effects of various tire characteristics and truck design parameters on rollover under steady cornering and non-tripped conditions. In particular, this tool may be used to help understand the basic mechanisms governing rollover propensity of trucks equipped with New Generation Wide Single tires as contrasted with conventional tires. Effects of tire flexibility, roll-compliant suspensions, fifth - wheel lash and nonlinear suspension characteristics are included in the model and are presented below. Design parameter data used as input to the model were obtained from Michelin Americas Research and Development Corporation.
X