Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fuel and Recharging Effects on Regulated and Unregulated Emissions from a Gasoline and a Diesel Plug-In Hybrid Electric Vehicle

2022-08-30
2022-01-1125
As passenger cars are progressively moving towards more electrification, Plug-in Hybrid Electric Vehicles (PHEVs) may play a greater role. Several questions arise regarding their performance in real-world conditions, their optimal configuration - in terms of battery capacity, fuel and powertrain used - and their pollutant emissions. In this context, two PHEVs complying with Euro 6d standards were evaluated on a chassis-dyno and on-road using the same road profile, complying with RDE requirements. The two vehicles differ only by their powertrain, one being diesel-fueled, and the other being gasoline-fueled. The vehicles were tested under various conditions, including charge depleting and charge sustaining modes (i.e., tests respectively starting with a fully charged battery and a discharged battery), with various fuel compositions including traditional fossil-based fuels, 100% renewable Hydrotreated Vegetable Oil (HVO) and 100% renewable gasoline, blended with 20% v/v ethanol (E20).
Technical Paper

Explicit Equations to Estimate the Flammability of Blends of Diesel Fuel, Gasoline and Ethanol

2020-09-15
2020-01-2129
Blends of gasoline, diesel fuel and ethanol (“dieseline”) have shown promise in engine studies examining low temperature combustion using compression ignition. They offer the possibility of high efficiency combined with low emissions of oxides of nitrogen and soot. However, unlike gasoline or diesel fuel alone, such mixtures can be flammable in the headspace above the liquid in a vehicle fuel tank at common ambient temperatures. Quantifying their flammability characteristics is important if these fuels are to see commercial service. The parameter of most interest is the Upper Flammable Limit (UFL) temperature, below which the headspace vapour is flammable. In earlier work a mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was developed and validated experimentally. It was then used to study the flammability of a wide variety of dieseline blends parametrically.
Journal Article

Fuel Effects on Regulated and Unregulated Emissions from Three Light-Duty Euro 5 and Euro 6 Diesel Passenger Cars

2020-09-15
2020-01-2147
Substantial advances in European road vehicle emissions have been achieved over the past 3 decades driven by strengthening revisions in emissions legislation and enabled by advances in fuel, vehicle engine and emissions control technologies. As both vehicle technology and emissions legislation in Europe continue to evolve, Concawe has conducted a study to examine the opportunities that fuels can provide to further reduce emissions from light-duty diesel passenger cars. Three European diesel cars spanning Euro 5, Euro 6b and Euro 6d-TEMP emissions certification levels have been tested over the cold-start WLTC (Worldwide harmonized Light-duty Test Cycle) with 6 fuels: an EN590-compliant B5 (petroleum diesel containing 5% biodiesel by volume), a bio-derived paraffinic diesel, a 50:50 blend of the aforementioned fuels, a low density petroleum-derived B5, a B30 and the same B30 additized with a high dose of cetane number improver.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol

2019-01-15
2019-01-0020
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa.
Technical Paper

A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank

2017-10-08
2017-01-2407
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this, but a practical concern is the flammability of the headspace vapours in the vehicle fuel tank. Gasoline is much more volatile than diesel so, at most ambient temperatures, the headspace vapours in the tank are too rich to burn. A gasoline/diesel mixture in a fuel tank therefore can result in a flammable headspace, particularly at cold ambient temperatures. A mathematical model is presented that predicts the flammability of the headspace vapours in a tank containing mixtures of gasoline and diesel fuel. Fourteen hydrocarbons and ethanol represent the volatile components. Heavier components are treated as non-volatile diluents in the liquid phase.
Technical Paper

Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter

2017-03-28
2017-01-0985
The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
Technical Paper

Effect of Octane Number on the Performance of Euro 5 and Euro 6 Gasoline Passenger Cars

2017-03-28
2017-01-0811
Research Octane Number (RON) and Motor Octane Number (MON) are used to describe gasoline combustion which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. Some workers have advocated the use of an octane index (OI) which incorporates both parameters instead of either RON or MON to give an indication of gasoline knock resistance. Previous Concawe work investigated the effect of RON and MON on the power and acceleration performance of two Euro 4 gasoline passenger cars during an especially-designed acceleration test cycle.
Journal Article

Vapour Space Flammability Considerations for Gasoline Compression Ignition Vehicles Operating on “Dieseline” Blends.

2016-10-17
2016-01-2266
Gasoline Compression Ignition (GCI) has been identified as a technology which could give both high efficiency and relatively low engine-out emissions. The introduction of any new vehicle technology requires widespread availability of appropriate fuels. It would be ideal therefore if GCI vehicles were able to operate using the standard grade of gasoline that is available at the pump. However, in spite of recent progress, operation at idle and low loads still remains a formidable challenge, given the relatively low autoignition reactivity of conventional gasoline at these conditions. One conceivable solution would be to use both diesel and gasoline, either in separate tanks or blended as a single fuel (“dieseline”). However, with this latter option, a major concern for dieseline would be whether a flammable mixture could exist in the vapour space in the fuel tank.
Technical Paper

Effect of Diesel Properties on Emissions and Fuel Consumption from Euro 4, 5 and 6 European Passenger Cars

2016-10-17
2016-01-2246
Certain diesel fuel specification properties are considered to be environmental parameters according to the European Fuels Quality Directive (FQD, 2009/EC/30) and previous regulations. These limits included in the EN 590 specification were derived from the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) which was carried out in the 1990’s on diesel vehicles meeting Euro 2 emissions standards. These limits could potentially constrain FAME blending levels higher than 7% v/v. In addition, no significant work has been conducted since to investigate whether relaxing these limits would give rise to performance or emissions debits or fuel consumption benefits in more modern vehicles. The objective of this test programme was to evaluate the impact of specific diesel properties on emissions and fuel consumption in Euro 4, Euro 5 and Euro 6 light-duty diesel vehicle technologies.
Technical Paper

Effect of Octane on the Performance of Two Gasoline Direct Injection Passenger Cars

2015-04-14
2015-01-0767
The performance aspect of gasoline combustion has traditionally been measured using Research Octane Number (RON) and Motor Octane Number (MON) which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance, while also helping refiners in the production of gasoline. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. It has also been suggested that there could be fuel efficiency benefits (on a tank to wheels basis) for specially adapted engines, for example, operating at higher compression ratio, on very high RON (100+). Other workers have advocated the use of an octane index (OI) which incorporates both RON and MON to give an indication of octane quality.
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Shape Optimization of a Single Cylinder Engine Crankshaft

2011-04-12
2011-01-1077
Due to increasing demand for environment friendly vehicles with better fuel economy and strict legislations on greenhouse gas emissions, lightweight design has become one of the most important issues concerning the automobile industry. Within the scope of this work lightweight design potentials that a conventional single cylinder engine crankshaft offers are researched through utilization of structural optimization techniques. The objective of the study is to reduce mass and moment of inertia of the crankshaft with the least possible effect on the stiffness and strength. For precise definition of boundary conditions and loading scenarios multi body simulations are integrated into the optimization process. The loading conditions are updated at the beginning of each optimization loop, in which a multi body simulation of the output structure from the previous optimization loop is carried out.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

2011-04-12
2011-01-1284
The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Interpretation Tools and Concepts for the Heat Management in the Drive Train of the Future

2011-04-12
2011-01-0650
Thermal management describes measures that result in the improved engine or vehicle operation in terms of energetics and thermo mechanics. In this context the involvement of the entire power train becomes more important as the interaction between engine, transmission and temperature sensitive battery package (of hybrid vehicles or electric vehicles with range extender) or the utilization of exhaust gas thermal energy play a major role for future power train concepts. The aim of thermal management strategies is to reduce fuel consumption while simultaneously increasing the comfort under consideration of all temperature limits. In this case it is essential to actively control the heat flow, in order to attain the optimal temperature distribution in the power train components.
X