Refine Your Search

Search Results

Viewing 1 to 7 of 7
Book

Gas Turbine Blade Cooling

2018-12-10
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications

2010-11-02
2010-01-1734
In this study, a molten salt-based high temperature nanofluid is explored for solar thermal energy conversion applications. The efficacy of the nanofluid as a heat transfer fluid (HTF) in concentrating solar power systems is explored in this study. The molten salt can enable higher operating temperature resulting in enhancement of the overall system efficiency for power generation (using, for example, a Rankine cycle or Stirling cycle). However, the usage of the molten salt as the HTF is limited due to their low specific heat capacity values (compared with, for example, water or silicone oils). The low specific heat of molten salt can be enhanced by doping small amount of nanoparticles. Solvents doped with minute concentration of nanoparticles are termed as "Nanofluids." Nanofluids are considered as attractive coolants for thermal management applications due to their anomalously enhanced thermal properties (compared with the neat solvent).
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

1994-04-01
941151
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezolectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
Technical Paper

High Impedance Fault Detection Using Artificial Neural Network Techniques

1992-08-03
929103
Artificial Neural Network(ANN) techniques are used to develop a system to detect High Impedance Faults(HIFs) in electric power distribution lines. Encouraging results were observed with a simple Multi-layer Perceptron(MLP) trained with the backpropagation learning algorithm. Although the results are not significantly better than those reported with other algorithmic approaches, ANN techniques have potential advantages over the other approaches; namely, ability to train the system easily to accommodate different feeder characteristics, ability to adapt and so become a better detector with experience and better fault tolerance. When these features are incorporated, the system is expected to perform better than existing systems. The system we developed for the current phase, the training strategies used, the tests conducted and the results obtained are discussed in this paper. Also background discussions on existing HIF detection techniques, and ANN techniques can be found in this paper.
X