Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Calculation Methods Impact on Real-Driving-Emissions Particulate Number Evaluation: Moving Averaging Window in China 6 vs. Raw Mileage Averaging in Euro 6d

2022-03-29
2022-01-0567
RDE test has been introduced to the light-duty vehicle certification process in both China 6 and Euro 6d standards. The RDE test shall be performed on-road with PEMS, which is developed to complement the current laboratory certification of vehicles and ensure cars to deliver low emissions under more realistic on-road driving conditions. Particulate matter has been highly perceived as a significant contributor to human health risks and thus strictly regulated globally. For the RDE evaluation, the MAW method used by the China 6 standard is usually found less stringent than the RMA method used by the Euro 6d standard. In the present study, both of the MAW and RMA methods were applied to different driving cycles and operating conditions, which met the general RDE test requirements, yet resulted in different evaluated PN results.
Technical Paper

Coated Gasoline Particulate Filter Technology Development to Meet China6 PN Regulation

2020-04-14
2020-01-0387
With the introduction of stringent particulate number (PN) limits and real driving emission (RDE) requirements, gasoline particulate filters (GPFs) have been widely adopted in Europe and China. GPFs can be coated with different amounts of three-way catalyst (TWC) coating. Some applications use large amounts of washcoat (>100g/L) whereas some don’t use at all. Pressure drop (DP) and PN filtration efficiency (FE) are the top two design criteria. It is important to understand how various coating technologies can be applied to GPF technologies for optimized FE/DP performance. To study filter and coating interaction, a matrix of coated GPFs was prepared and tested for lab DP and vehicle PN based FE. The matrix includes samples with a wide range of washcoat loadings (WCLs), differing coating technologies that target more coating inside GPF filter walls (Tech A) or more on the surface of filter walls (Tech B), and GPF technologies with high and low mean pore size (MPS).
X