Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Multiscale, Multiphysics Computational Chemistry Methods Based on Artificial Intelligence Integrated Ultra-Accelerated Quantum Molecular Dynamics for the Application to Automotive Emission Control

2016-11-08
2016-32-0067
On the basis of extensive experimental works about heterogeneous catalysts, we developed various software for the design of automotive catalysts such as Ultra-Accelerated Quantum Chemical Molecular Dynamics (UA-QCMD), which is 10 million times faster than the conventional first principles molecular dynamics, mesoscopic modeling software for supported catalysts (POCO2), and mesoscopic sintering simulator (SINTA) to calculate sintering behavior of both precious metals (e.g., Pt, Pd, Rh) and supports (e.g., Al2O3, ZrO2, CeO2, or CeO2-ZrO2). We integrated the previous programs in a multiscale, multiphysics approach for the design of automotive catalysts. The method was efficient for a variety of important catalytic reactions in the scope of the automotive emission control. We demonstrated the efficiency of our approach by comparing our data with experimental results including both simple laboratory experiments and chassis dynamometer exhaust gas emission control experiments.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-04-16
2012-01-1292
Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
X