Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Cummins Smart Oil Consumption Measuring System

2000-03-06
2000-01-0927
The advantages and disadvantages for the current oil consumption measurement systems, including the real-time oil consumption measurement and traditional weight methods, are reviewed. Based on the review, the Smart Oil Consumption Measuring System developed by Cummins Engine Co. in an effort to resolve some of the disadvantages of the systems developed earlier, especially compared to the Gravity Fed oil consumption measurement system, will be discussed. In addition, the uncertainty analysis of the Smart Oil Consumption Measuring System will also be briefly discussed here. The Smart Oil Consumption Measuring System has proven to be an effective tool to measure the oil consumption at almost any engine test conditions, including the steady and cyclic tests in a shorter time than most of traditional oil consumption measurement systems.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Prediction of Radiated Noise from Engine Components Using the BEM and the Rayleigh Integral

1997-05-20
971954
This paper examines the feasibility of using the boundary element method (BEM) and the Rayleigh integral to assess the sound radiation from engine components such as oil pans. Two oil pans, one cast aluminum and the other stamped steel, are used in the study. All numerical results are compared to running engine data obtained for each of these oil pans on a Cummins engine. Measured running-engine surface velocity data are used as input to the BEM calculations. The BEM models of the oil pains are baffled in various ways to determine the feasibility of analyzing the sound radiated from the oil pan in isolation of the engine. Two baffling conditions are considered: an infinite baffle in which the edge of the oil pan are attached to an infinite, flat surface; and a closed baffle in which the edge of the oil pan is sealed with a rigid structure. It is shown that either of these methods gives satisfactory results when compared to experiment.
Technical Paper

Reducing Compression Brake Noise

1997-05-20
971870
A survey is made of compression brake noise levels in heavy duty diesel trucks, using test procedures based on the ISO and EPA driveby acceleration noise tests. The data shows that compression brake noise levels are very high if worn out or open stack exhaust systems are used. Compression brake noise is also audible with OEM exhaust systems and, in at least one case, potentially objectionable. Two methods for reducing brake noise are investigated: improved mufflers and the use of an exhaust brake with the compression brake. Both techniques demonstrate a potential for reducing compression brake noise.
Technical Paper

Developing a Test Procedure for Compression Brake Noise

1997-05-20
972038
In this paper, a procedure for the measurement of noise produced by compression brakes on heavy duty trucks is proposed and evaluated. The test procedure is an adaptation of the ISO exterior vehicle noise regulation, ISO 362, to measure compression brake noise. The test consists of two parts, a driveby test and a stationary brake test, which are both developed to accentuate compression brake noise. The proposed test is demonstrated to provide results that are indicative of on-road compression brake noise. The sensitivity of the test results to variations in several test parameters is also examined.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

J366 Driveby Variability

1995-05-01
951357
The EPA Heavy Truck Driveby Noise test is used to regulate trucks over 10,000 pounds GVW. The EPA test procedure is based on SAE J366. The EPA/J366 procedure is used both as a regulatory compliance tool and as a development tool. When the test procedure is used as a development tool, the goal is to determine the most cost effective means of meeting the legal requirement. Since J366 was not intended as a development tool, it can be difficult or misleading to use it to make decisions on product configuration. In order to use J366 successfully in vehicle or engine development, one must understand and properly account for the inherent variability of the J366 driveby test procedure. This paper examines both the extent and some of the sources of J366 driveby test variability. Strategies are proposed to ensure the proper interpretation of test results. Several repeat tests are required to accurately determine a small change in driveby noise level.
Technical Paper

Survey of Winter '93 Low Sulphur Diesel Fuels in the U.S.

1994-10-01
942013
Reports of disabling diesel engine seal failures which accompanied the introduction of low sulfur diesel fuel in October '93 prompted an in-depth survey of diesel fuel chemical and physical properties. The purpose of the survey was to anticipate other possible problems which might arise with the newly introduced low sulfur fuels. The survey will produce a database containing over 1000 number 2 diesel fuels from various parts of the US. About 75% of the samples tested were on-highway low sulfur diesel fuels. Samples analyzed were from the D-A Lubricant Company, Cummins customers failures (truck fleets of various sizes), and a number of retail fueling stations. Properties under investigation are % Sulfur, Cloud/Pour Points, Viscosity, API Gravity, TAN/TBN, Boiling Range, Aromatics content, Heat Content, Lubricity, and Peroxide number.
Technical Paper

Development of a Bench Test to Detect Oils Corrosive to Engine Components

1994-03-01
940790
Corrosive wear of non-ferrous engine components by lubricants is a concern of all major heavy duty diesel engine manufacturers since warranty on key engine components has been extended to 500,000 miles. Several commercial lubricants have been linked to premature cam and rod bearing failures induced by corrosion in certain fleets. Although the overall failure rate is low, specific fleets have experienced significantly higher failure rates due to the lubricants used. These failures usually occur at high mileages but less than 500,000 miles. This kind of slow corrosion easily escapes detection of engine tests contained in current oil specifications, and it represents a serious issue in long term warranty cost to diesel engine manufacturers. A comprehensive fleet database has been established to identify the most corrosive lubricants. These lubricants have served as reference oils to develop a corrosion bench test.
Technical Paper

High Temperature Liquid Lubricant Development Part I: Engine Tests

1993-10-01
932842
A high horsepower, low heat rejection diesel engine is being developed to meet future Army heavy combat vehicle requirements. This engine features high power output in a compact design that is oil-cooled allowing for a significant reduction in radiator size. This design requires a lubricant which can survive a sump temperature of 160°C, for 300 hours with transient sump temperature surges to over 177°C. A comprehensive high temperature lubricant development program has been initiated to address the need for this new design. A modified Cummins 10 liter diesel engine was used to simulate the operating condition of this low heat rejection engine. The premium commercial lubricant that was tested survived only 58 hours before completely losing oxidative stability. Several of the experimental lubricants completed the 200-hour peak torque endurance test.
Technical Paper

J1939 High Speed Serial Communications, The Next Generation Network for Heavy Duty Vehicles

1993-01-09
931809
Data link interfaces are a very important part of the heavy duty vehicle industry; sharing information between subsystems is vital. SAE Recommended Practices J1708, J1587 and J1922 were developed to provide standards for proprietary communications, general information sharing, diagnostic definition and early powertrain controls. The industry realized, however, that these standards would not accomplish the ultimate goal-that of a high speed control and communications network. The development of more capable serial data communications for the heavy duty vehicle industry was prompted by the following: the desire of component suppliers to integrate subsystems for improved performance; the advancement of technology; customer expectations; and government regulations.
Technical Paper

Engine Testing for Quality and Productivity

1988-11-01
881768
This paper discusses the various process changes, engine improvements, and equipment evolution that have contributed to significant increases in test productivity for heavy duty engines over the past several years. It deals with the development of short test cycles, methods of diagnosing operating problems, methods of maintaining test accuracy and discusses systems for minimizing test equipment down time. Finally it presents historical overview of the changes as they occurred at Cummins Engine Company and how performance improved over that transition period.
Technical Paper

Simulating the Lubrication System of a Diesel Engine

1977-02-01
770032
The entire engine lubrication system has been represented by a series-parallel network of flow passages and flow elements. The pressure distribution and flow rates in the network were computed according to pressure-flow characteristics of each element. The pressure-flow relationship for each network element was estimated using empirical pipe friction, expansion, and bend loss coefficients, as well as by using test rig results and a steady-state journal bearing model. The journal bearing model is basically that of the classical short bearing model with provision for heat transfer to the oil and the relative thermal growth of the journal and bearing system. When compared with diesel engine tests, the simulation predicted the pressure distribution throughout the engine and the flow rate through each branch within 10%.
Technical Paper

Vehicle Mission Simulation, 1970

1970-02-01
700567
Vehicle mission simulation is one component of a system designed to optimize selection and operation of on-highway vehicles. The focus of vehicle mission simulation is on equipment specification. It can predict the physical and financial performance of equipment alternatives, identify opportunities and correct problems before a truck is purchased.
X