Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

A Study on the Development of Concept Models Using Higher-Order Beams

2024-04-09
2024-01-2227
In the early stages of vehicle development, it is critical to establish performance goals for the major systems. The fundamental modes of body and chassis frames are typically assessed using FE models that are discretized using shell elements. However, the use of the shell-based FE method is problematic in terms of fast analysis and quick decision-making, especially during the concept phase of a vehicle design because it takes much time and effort for detailed modeling. To overcome this weakness, a one-dimensional (1D) method based on beam elements has been extensively studied over several decades, but it was not successful because of low accuracy for thin-walled beam structures. This investigation proposes a 1D method based on thin-walled beam theory with comparable accuracy to shell models. Most body pillars and chassis frame members are composed of thin-walled beam structures because of the high stiffness-to-mass ratio of thin-walled cross sections.
Technical Paper

A Study on the Evaluation of UX of Mid SUV

2024-04-09
2024-01-2460
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
Technical Paper

Engine Crank Stop Position Control to Reduce Starting Vibration of a Parallel Hybrid Vehicle

2024-04-09
2024-01-2784
Engine off control is conducted on parallel hybrid vehicles in order to reduce fuel consumption. It is efficient in terms of fuel economy, however, noise and vibration is generated on engine cranking and transferred through engine mount on every mode transition from EV to HEV. Engine crank position control has been studied in this paper in order to reduce vibration generated when next cranking starts. System modeling of an architecture composed of an engine, P1 and P2 motors has been conducted. According to the prior studies, there exists correlation between crank vibration level and the crank angle. Thus a method to locate pistons on a specific crank angle which results in a local minimum of vibration magnitude could be considered. The P1 motor facilitates this crank position control when engine turns off, for its location directly mounted on a crankshaft allows the system model to obtain more precise crank position estimation and improved linearity in torque control as well.
Technical Paper

Development of an Automated CAD Database and Application on Aluminum Wheel

2024-04-09
2024-01-2724
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language.
Technical Paper

A Study on the Development of Architecture Virtual Driving Performance using Concept Model

2024-04-09
2024-01-2723
An architecture virtual driving performance development process and strategy were established using the concept model. Driving performance concept models for each level and performance, that can be utilized in the architecture stage, were developed. Advanced concept models such as smart driver and comfort models were developed for reliable emergency handling and comfort performance prediction. System characteristic DB(DataBase) structure was designed and formed to utilize the concept model for major vehicle platforms and models. System characteristics can be configured by automatically extracting system characteristics from ADAMS model or SPMD(Suspension Parameters Measuring Device) DB. In addition, when the concept model is completed by updating the weight, specifications and tire characteristic of the new vehicle platform, handling and ride comfort performance can be analyzed.
Technical Paper

Development of Ammonia Direct Injection 4-Cylinder Spark-Ignition Engine

2024-04-09
2024-01-2818
As the carbon neutrality to reduce greenhouse gas emissions has become a global movement, the development of power sources using carbon-free fuels is an essential task for the industry. Accordingly, many companies in various fields that need carbon reduction are striving to develop power sources and build energy value chains using carbon-free or carbon-neutral fuels such as hydrogen and E-fuel. Ammonia, which is also a carbon-free fuel, stands as an efficient energy vector delivering high energy density and flexibility in transportation and storage, capable of mitigating hydrogen’s key drawbacks. However, difficulty of controlling combustion of ammonia due to its fuel characteristics limited the development of internal combustion engines using ammonia to the basic research stage in the limited operating conditions. Hyundai Motor Company presents the development of ammonia fueled 4-cylinder SI engine using direct injection strategy, designed based on 2.5L LPG T-DI engine.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Comparison on Combustion and Emissions Performance of Biodiesel and Diesel in a Heavy-duty Diesel Engine: NOX, Particulate Matter, and Particle Size Distribution

2023-09-29
2023-32-0100
Low carbon emissions policies for the transportation sector have recently driven more interest in using low net-carbon fuels, including biodiesel. An internal combustion engine (ICE) can operate effectively using biodiesel while achieving lower engine-out emissions, such as soot, mostly thanks to oxygenate content in biodiesel. This study selected a heavy-duty (HD) single-cylinder engine (SCE) platform to test biodiesel fuel blends with 20% and 100% biodiesel content by volume, referred to as B20, and B100. Test conditions include a parametric study of exhaust gas recirculating (EGR), and the start of injection (SOI) performed at low and high engine load operating points. In-cylinder pressure and engine-out emissions (NOX and soot) measurements were collected to compare diesel and biodiesel fuels.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

Optimization of Body D-Pillar Ring Structure

2023-04-11
2023-01-0604
The body stiffness plays a key role in vehicle performance, such as noise and vibration, ride and handling, durability and so on. In particular, a body D-pillar ring structure is the most sensitive affecting the body stiffness on vehicle with tail gate. Therefore, since D-pillar body ring structure for high stiffness and lightweight is required, an optimized design methodology that simultaneously satisfies the requirements was studied. It focused on a methodology that body engineering designers can optimize design parameters easily and quickly by themselves in the preceding stages of vehicle’s styling distribution and design conceptual planning. First, it is important to establish the body stiffness design strategy by predicting the body stiffness with the vehicle’s styling at early design stage. The methodology to predict body stiffness with the styling and body dimension specification parameters was introduced.
X