Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Catalytic Formulation for NO2 Suppression and Control

2008-06-23
2008-01-1548
To counter the adverse impact on the formation of harmful unregulated emissions such as nitro-polycyclic aromatic hydrocarbons (NPAH), catalyst companies and researchers have been developing catalytic coatings that have the capability of suppressing the formation of NO2. NO2 is formed at low exhaust temperatures with potentially greater concentrations at part load engine operation. Haldor Topsoe, a catalyst company from Denmark, developed such a catalytic coating for DPFs. A sample was provided to Southwest Research Institute (SwRI) to conduct this research with a view of potentially improving NO2-suppressing formulations in the future. The Haldor Topsoe diesel particulate filter (DPF) with its novel coating was tested together with three other DPFs and the results confirmed the capability of this DPF to suppress the formation of NO2. This characteristic was apparent in all five engine test modes selected to cover the full engine operating range.
Technical Paper

Development of an Ethanol-Fueled Ultra-Low Emissions Vehicle

1998-05-04
981358
A 1993 Ford Taurus Flexible Fuel Vehicle (FFV) designed to operate on gasoline or methanol has been modified to run on Ed85 (85 vol.% denatured ethanol, 15 vol.% gasoline) and has demonstrated the ability to meet California's Ultra-Low Emissions Vehicle (ULEV) standards. The vehicle maintains the excellent driveability with potentially increased performance and similar efficiency to the baseline vehicle. Using standard twin OEM catalysts, FTP-75 emissions were 0.085 g/mi NOx, 0.88 g/mi CO, and 0.039 g/mi reactivity-adjusted NMOG. Using close-coupled catalysts upstream of the OEM catalysts, FTP-75 emissions were 0.031 g/mi NOx, 0.297 g/mi CO, and 0.015 g/mi reactivity-adjusted NMOG. The catalysts were aged to about 4,000 miles of equivalent use. These emissions compare with ULEV standards of 0.2 g/mi NOx, 1.7 g/mi CO, and 0.04 g/mi NMOG at 50,000 miles of use.
Technical Paper

Heavy-Duty Diesel Hydrocarbon Speciation:Key Issues and Technological Challenges

1993-10-01
932853
Development of methodology for diesel hydrocarbon speciation of C12-C22 compounds and the application of that methodology to determine total ozone forming potential of diesel exhaust emissions is an extremely complicated task. Methodology has already been developed for speciating C1-C12 exhaust emissions from engines and vehicles fueled with gasoline, diesel, and alternate fuels. However, very little or no information is available for exhaust speciation of C12-C22 compounds as sampling and analytical constraints make the collection and analysis of the higher molecular weight compounds extremely challenging. Key issues related to the definition of “hydrocarbons” also need to be addressed prior to promulgation of future reactivity-based legislation for diesels (e.g., Which exhaust hydrocarbon compounds actually exist in gas-phase and participate in atmospheric ozone formation?).
X