Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

Composite Lightweight Automotive Suspension System (CLASS)

2019-04-02
2019-01-1122
The Composite Lightweight Automotive Suspension System is a composite rear suspension knuckle/tieblade consisting of UD prepreg (epoxy resin), SMC (vinylester resin) carbon fibre and a steel insert to reduce the weight of the component by 35% and reduce Co2. The compression moulding manufacturing process and CAE optimisation are unique and ground-breaking for this product and are designed to allow high volume manufacture of approx. 30,000 vehicles per year. The manufacturing techniques employed allow for multi-material construction within a five minute cycle time to make the process viable for volume manufacture. The complexities of the design lie in the areas of manufacturing, CAE prediction and highly specialised design methods. It is a well-known fact that the performance of a composite part is primarily determined by the way it is manufactured.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Journal Article

Flow-Induced Whistle in the Joint of Thermal Expansion Valve and Suction Tube in Automotive Refrigerant System

2015-06-15
2015-01-2275
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

Flow-Induced Gurgling Noise in Automotive Refrigerant Systems

2015-06-15
2015-01-2276
Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems. In this study, the condition of the gurgling generation is investigated at the vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV for system equipped with variable displacement compressors. By conducting literature reviews, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized. Then the gurgling mechanism is explained as the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant subsystem (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
Technical Paper

CAE Simulation of Engine Tonal Noise Generated by Gerotor Oil Pumps

2015-06-15
2015-01-2245
A CAE method has been developed to address engine tonal noise and whine due to the excitation from a gerotor oil pump. The method involves a multidisciplinary approach including CFD, frequency-response structural analysis and acoustic analysis. The results from the application of the method applied to a couple of pumps with different designs are discussed. Engine tonal noise improvement through reduction in the excitation source from the pump and also stiffening the excitation path from the pump to the engine are studied. The effect of component modal alignment with oil pump orders is addressed as well.
Technical Paper

Study of Stick-Slip Friction between Plunging Driveline

2015-06-15
2015-01-2171
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
Technical Paper

Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel

2015-04-14
2015-01-1080
A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
Technical Paper

Innovative Configuration of the Closed-Loop Test Stand

2015-04-14
2015-01-1092
The purpose of the article is to describe different possibilities of the innovative concept of the closed-loop test rig. The performed tests will be demonstrated with the example of measured data. Firstly the article will describe in detail the design of the test stand and both torque units. The power flow in the closed-loop circuit will be described and measured to find out the power losses of all parts. The measurement will be done for manual and planetary pretensioning mechanism. The comparison of the overall efficiency and demanded power for both torque units will be given. For evaluation of gearbox efficiency, the magnitude of power losses will be evaluated for different revolutions, torque levels and shifted speeds. For a long term tests, the unmanned operation is prepared. For this purpose is the stand equipped with electromechanical shift robots. The description of its concept and functioning will be part of the paper.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Technical Paper

Port Injection of Water into a DI Hydrogen Engine

2015-04-14
2015-01-0861
Hydrogen fueled internal combustion engines have potential for high thermal efficiencies; however, high efficiency conditions can produce high nitrogen oxide emissions (NOx) that are challenging to treat using conventional 3-way catalysts. This work presents the results of an experimental study to reduce NOx emissions while retaining high thermal efficiencies in a single-cylinder research engine fueled with hydrogen. Specifically, the effects on engine performance of the injection of water into the intake air charge were explored. The hydrogen fuel was injected into the cylinder directly. Several parameters were varied during the study, including the amount of water injected into the intake charge, the amount of fuel injected, the phasing of the fuel injection, the number of fuel injection events, and the ignition timing. The results were compared with expectations for a conventionally operated hydrogen engine where load was controlled through changes in equivalence ratio.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Journal Article

Issues with T50 and T90 as Match Criteria for Ethanol-Gasoline Blends

2014-11-01
2014-01-9080
Modification of gasoline blendstock composition in preparing ethanol-gasoline blends has a significant impact on vehicle exhaust emissions. In “splash” blending the blendstock is fixed, ethanol-gasoline blend compositions are clearly defined, and effects on emissions are relatively straightforward to interpret. In “match” blending the blendstock composition is modified for each ethanol-gasoline blend to match one or more fuel properties. The effects on emissions depend on which fuel properties are matched and what modifications are made, making trends difficult to interpret. The purpose of this paper is to illustrate that exclusive use of a match blending approach has fundamental flaws. For typical gasolines without ethanol, the distillation profile is a smooth, roughly linear relationship of temperature vs. percent fuel distilled.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Technical Paper

Operation of an Ordinary PFI Engine on n-butanol and Iso-butanol and Their Blends with Gasoline

2014-10-13
2014-01-2618
An ordinary, unmodified port fuel injection spark ignition automobile engine with closed-loop air-fuel ratio control and a three-way catalyst was operated on two butanol isomers, n-butanol and iso-butanol, and their blends with gasoline at steady-state operating points covering both common and potentially problematic regimes. The engine control unit was able to maintain the air-fuel ratio while running on both butanol isomers and their blends with gasoline. Only small changes in the heat release rates, small and insignificant decrease in exhaust gas temperatures, and no excessive increase in emissions were observed. Under commanded enrichment operation, the maximum torque, air-fuel ratio and exhaust emissions were comparable among nearly all fuels tested. The exhaust gas temperatures were comparable among fuels, with a moderate increase observed in some regimes during operation with high share of n-butanol in fuel.
Technical Paper

Measurement of Exhaust Emissions of Small Gasoline Engines Under Real-World Driving Conditions

2014-10-13
2014-01-2811
The paper focuses on portable “on-board” instrumentation and methods for evaluation of exhaust emissions from scooters and various small machinery under real-world driving conditions. Two approaches are investigated here. In one, a miniature on-board system mounted on the equipment itself performs online measurements of the concentrations of the pollutants of interest (HC, CO, CO2, NOx, some property of particulate matter), and measurement or computation of the intake air flow. This approach has been used on a 50 cm3 scooter fitted with a 14-kg on-board system and driven on local routes. Measured concentrations of gaseous compounds, particle mass and total particle length were multiplied with the corresponding intake air flow computed from measured engine rpm, intake air manifold pressure and temperature. In the second approach, a full-flow dilution tunnel, gas analyzers and particle measurement or sampling devices are mounted on an accompanying hand cart or vehicle.
X