Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Ultra-High Fuel Pressure in GDI to Suppress Particulate Formation during Warming-Up and Load Transients

2023-04-11
2023-01-0239
This study investigates if particulates from a GDI engine can be significantly suppressed by use of ultra-high injection pressures under 2 different engine conditions known to be associated with high particulate numbers (PN): warm-up and transients. Experiments were carried out in a single-cylinder GDI engine equipped with an endoscope connected to a high-speed camera to enable combustion visualization. To mimic the warming-up, the coolant temperature was varied between 20 °C and 90 °C. A Diesel injector with modified nozzle was used and the injection pressures were varied between 400 and 1500 bar. The results revealed that increasing the fuel injection pressure decreased engine out HC and PN under warming-up conditions. However, the coolant water temperature was the most dominant factor affecting the emissions. For coolant temperature of 20 °C, the use of 1500 bar fuel injection pressure in comparison to lower fuel pressures resulted in significantly lower PN.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Analysis of Tribofilm Formed by Electric Brush Sliding for Long Life Starter Motor

2019-04-02
2019-01-0181
Global exhaust emission regulations are becoming stricter, and vehicles equipped with the idle stop system (ISS) are increasing. Recently, starters for vehicles equipped with ISS are required to improve operation feel when speedily restarted. To satisfy this demand, starters must rotate at higher rotational speeds, and heavier wear in their brushes may cause problems. Tribofilm formed on commutators surface by the brush sliding is an important factor in the brush commutator wear, because tribofilm is said to have a property to increase lubricity and decrease mechanical wear in brushes and commutator, as well as to improve commutation and decrease arc wear. Therefore, for reducing brush commutator wear, it is considered effective to promote film formation by improving materials. However, few researches have been conducted to evaluate the relationship between brush materials and tribofilm formation.
Technical Paper

Thin Ceiling Circulator to Enhance Thermal Comfort and Cabin Space

2019-04-02
2019-01-0913
In hot climate regions, there is demand for improved thermal comfort for rear occupants in vehicles not equipped with a rear air conditioner. One solution to this challenge is a circulator mounted on the ceiling. The circulator is a product designed to enhance thermal comfort for occupants by circulating the air in the cabin. The conventional circulator design, which employs a cross flow fan with a large cross section, juts into the cabin space, because it is difficult to package. Consequently, the challenge for the circulator is to provide thermal comfort for rear occupants while taking up the minimum cabin space under the ceiling. To solve this challenge, that is, to enable a substantially thinner structure, while retaining the same level of air flow delivered as before for the same thermal comfort as the conventional circulator, we divided the structure into an air outlet and an air blower.
Technical Paper

Maximizing Coasting of 48 V Vehicles with Cold-Storage Evaporator

2018-05-30
2018-37-0023
One of the main features of 48 V vehicles is the ability to coast at high speeds with the Internal Combustion Engine (ICE) off. This can be realized due to the high torque and power the 48 V motor-generator provides which allows a quick and smooth re-cranking of the ICE. The coasting feature reduces the fuel consumption depending on frequency and duration of the coasting events. This depends in turn on driving pattern, driving style, State-of-Charge of the 48 V and 12 V batteries and the air-conditioning (A/C) system. In summer, if the A/C runs with a mechanical belt-driven compressor, the cabin inlet air temperature from the evaporator inevitably increases during each coasting event as the ICE turns off and cannot operate the compressor. If the evaporator temperature reaches a certain threshold at which the cabin comfort is noticeably affected, the ICE is re-cranked for resuming air-conditioning.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Development of a New MOS Rectifier for High-Efficiency Alternators

2017-03-28
2017-01-1240
For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
Technical Paper

Development of High Efficiency Rectifier with MOSFET in “eSC Alternator”

2017-03-28
2017-01-1228
Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
Technical Paper

Development of New Generation Battery Management ECU

2017-03-28
2017-01-1203
Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
Technical Paper

New Spray Concept Development for Dual Injection System

2017-03-28
2017-01-0835
Gasoline direct injection (GDI) systems are a main development focus for global environment issues and energy security. At the same time, it is also important to challenge further development of Multi point injection (MPI) systems for a simple and robust combustion system responding to global fuels ,required for the growing automotive markets in emerging countries, especially in the A, B vehicle segments. This paper focuses on reducing wall wetting in cold conditions and maximizing mixture cooling by fuel vaporization (preventing knocking) in high load conditions as key development points of MPI systems. We propose a dual MPI system enhancing direct flow of spray into the combustion chamber to gain part of the benefit of GDI in addition to the homogeneity advantage of an MPI system. This dual MPI system requires finer atomization with at the same time robustness against intake airflow.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Journal Article

Prediction Method for Automobile EMI Test Result in AM Frequency Band

2017-03-28
2017-01-0014
The EMI, electromagnetic interference, is tested for automobiles and components by the method defined in the international standard, CISPR 25. Regarding the automobile test, the EMI from the component installed in the automobile is measured by the antenna of an automobile. On the other hand on the component test, the EMI from the component is measured by a mono-pole antenna set forward of the component. However, components sometimes fail the automobile test even if its passed the component test due to the difference of the method. In this case, the component has to be designed again to pass the automobile test. Therefore, the prediction method of the automobile test result is required. In this paper, we tried to modify the standard component test configuration to predict the automobile test result for a fuel pump system in AM frequency band.
Journal Article

Reduction of Cranking Noise from High Voltage Starter for One-Motor Two-Clutch Hybrid Systems

2017-03-28
2017-01-1167
In this paper, we propose a high voltage brushless AC starter that contributes to improved fuel efficiency and a reduction in the cost of the one-motor two-clutch hybrid system, which we call a 1MG2CL system. We have named it the HV starter, and it is composed of an AC motor, inverter and pinion with a shift mechanism. One of the issues with the 1MG2CL system is the high electrical energy when starting an ICE as it switches over from EV drive to HEV drive. While the ICE is starting, the main motor has to crank the ICE via the clutch; the clutch slips to absorb the main motor power, so the main motor has to output a high power to overcome the loss. Therefore, to contribute to reducing the electrical power by eliminating clutch slip losses, we developed an HV starter as a dedicated ICE starting device. Thanks to the reduction in electrical power, the HV starter is able to improve fuel efficiency and reduce system costs.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Compact High-Efficiency 2-Layer Blower Fan for HVAC

2016-04-05
2016-01-0193
In recent years, the spread of eco-car has led to the demand for adaptation to low heat source, high efficiency and low noise in vehicle air conditioner. On the other hand, larger interior space of vehicle to assure passenger comfort is demanded, so that the car air-conditioner is required to be smaller. Therefore, we adopted 2-layer HVAC for the air conditioner which can respond to a low heat source. At the same time we have developed the compact high-efficiency 2-layer blower fan for HVAC in order to enable the 2-layer HVAC to be mounted on eco-car with smaller space than conventional HVAC. Generally, because axial flow velocity increases resulting from downsizing of the blower, the ununiform velocity distribution in the axial direction and the turbulent flow between fan blades occurs. It causes the efficiency decrease. To satisfy both downsizing and high-efficiency of the 2-layer blower, we have developed new technologies which can make the flow uniform between fan blades.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
X