Refine Your Search

Topic

Search Results

Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Maximizing Coasting of 48 V Vehicles with Cold-Storage Evaporator

2018-05-30
2018-37-0023
One of the main features of 48 V vehicles is the ability to coast at high speeds with the Internal Combustion Engine (ICE) off. This can be realized due to the high torque and power the 48 V motor-generator provides which allows a quick and smooth re-cranking of the ICE. The coasting feature reduces the fuel consumption depending on frequency and duration of the coasting events. This depends in turn on driving pattern, driving style, State-of-Charge of the 48 V and 12 V batteries and the air-conditioning (A/C) system. In summer, if the A/C runs with a mechanical belt-driven compressor, the cabin inlet air temperature from the evaporator inevitably increases during each coasting event as the ICE turns off and cannot operate the compressor. If the evaporator temperature reaches a certain threshold at which the cabin comfort is noticeably affected, the ICE is re-cranked for resuming air-conditioning.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
Technical Paper

Evaluation Method of Thermal Sensation and Comfort for Air Conditioning Performance Reduction

2018-04-03
2018-01-0775
As a method of maintaining thermal sensation and comfort inside a passenger compartment, not only a conventional HVAC system but also a combination of a HVAC system and other devices such as seat heaters, a steering wheel heater, ventilation seats are increasing. This research developed a method to evaluate thermal sensation of a human body when using these various thermal control devices. This method can evaluate the heat balance of the human body by calculating the amount of heat exchange between a human body and the external environment, and it takes into consideration the influence of heat exchange by heat conduction with seats or a steering wheel. The human thermal model is made by dividing a human body into various segments, and it is the model that considers heat transport by blood flow for each segment.
Technical Paper

A Sense of Distance and Augmented Reality for Stereoscopic Vision

2018-04-03
2018-01-1036
Head-up displays (HUDs) give visual information to drivers in an easy to understand manner and prevent traffic accidents. Augmented reality head-up displays (AR-HUDs) display the driving information overlaid on the actual scenery. The AR-HUD must allow the visual information and the actual scene to be viewed at the same time, and a sense of depth and distance are key factors in achieving this. Binocular parallax used in stereoscopic 3D display is one of the most useful methods of providing a sense of depth and distance. Generally, stereoscopic 3D displays must limit the image range to within Panum’s fusional area to ensure fusion of the stereoscopic images. However, when using a stereoscopic 3D display for an AR-HUD, the image range must extend beyond Panum’s fusional area to allow the visual information and the actual scene to be displayed at the same time.
Journal Article

Self-Excited Wound-Field Synchronous Motors for xEV

2017-03-28
2017-01-1249
Compact, high efficiency and high reliability are required for an xEV motor generator. IPM rotors with neodymium magnets are widely applied for xEV motors to achieve these requirements. However, neodymium magnet material has a big impact on motor cost and there is supply chain risk due to increased usage of these rare earth materials for future automotive xEV’s. On the other hand, a wound-field rotor does not need magnets and can achieve equivalent performance to an IPM rotor. However, brushes are required in order to supply current to the winding coil of the rotor. This may cause insulation issues on xEV motors which utilize high voltage and high currents. Therefore, it is suggested to develop a system which supplies electric energy to the rotor field winding coil from the stator without brushes by applying a transformer between stator coil and rotor field winding. Specifically, add auxiliary magnetic poles between each field winding pole and wind sub-coils to these poles.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

High-Precision Modeling of Heat Exchanger Core on Vehicle Engine Room Airflow Analysis

2017-03-28
2017-01-0129
In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
Technical Paper

Display System for Vehicle to Pedestrian Communication

2017-03-28
2017-01-0075
In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
Technical Paper

ECU Structure Strategy to Detect Lift Timing of GDI Solenoid Injectors with High Precision

2017-03-28
2017-01-1628
In gasoline direct injection (GDI) systems, various injection types are needed to reduce emissions and improve fuel consumption. This requires high-precision injection in the region in which the amount of injection is small. Achieving injection of a small amount of fuel using GDI solenoid injectors requires the use of the half-lift region. In this region, however, the variation in the injection amount tends to increase due to the variation in the lift behavior of the injectors, posing the problem of how to achieve high-precision injection. To reduce the variation, we analyzed the lift timing out of the injector current and voltage signal with the ECU in an attempt to adjust the amount of injection.
Technical Paper

A Fixed-quantity Indicator to Replace Display Annoyance in an Indirect Field of Vision

2017-03-28
2017-01-1370
Driving is an action that depends strongly on visual information. For displays in the cockpit, a combination of “ease of viewing” to inform the driver of danger early and “annoyance reduction” to avoid drops in the driver’s perception is needed. In this study, we tried to capture “ease of viewing” and “annoyance” in one fixed-quantity indicator. We took up a Camera Monitor System (CMS) as the subject and analyzed the effect that annoyance with the display used in CMSs has on driving behavior. Based on our analysis, we hypothesize that evaluating carelessness in viewing behavior is related evaluating to annoyance. Next, we chose a Detection Response Task (DRT) technique as a method to evaluate driving behavior influenced by this annoyance.
Technical Paper

Development of New Generation Battery Management ECU

2017-03-28
2017-01-1203
Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
Technical Paper

Realizing Robust Combustion with High Response Diesel Injector with Controlled Diffusive Spray Nozzle and Closed Loop Injection Control

2017-03-28
2017-01-0845
The Diesel engine performance was drastically improved since the introduction of the Common Rail system in 1996. Over the years, the Common Rail technology was continuously improved to reduce the fuel consumption, engine-out emissions and enhance the drivability. However further technical improvement steps for a precise control of combustion are required to satisfy the increasing stringent worldwide emissions limits and to contribute to attractively performing Diesel powered vehicles. Common Rail injectors significantly contribute to improve the combustion. This improvement can be achieved by precisely controlling the injected fuel quantity and increasing the injection pressure. In addition to those features, a more rectangular injection rate, the capability of stable multiple injections at shorter intervals and the control of the spray shape, are required to achieve an optimized fuel mixture.
Journal Article

Ejector Energy-Saving Technology for Mobile Air Conditioning Systems

2017-03-28
2017-01-0120
This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
Journal Article

Reduction of Cranking Noise from High Voltage Starter for One-Motor Two-Clutch Hybrid Systems

2017-03-28
2017-01-1167
In this paper, we propose a high voltage brushless AC starter that contributes to improved fuel efficiency and a reduction in the cost of the one-motor two-clutch hybrid system, which we call a 1MG2CL system. We have named it the HV starter, and it is composed of an AC motor, inverter and pinion with a shift mechanism. One of the issues with the 1MG2CL system is the high electrical energy when starting an ICE as it switches over from EV drive to HEV drive. While the ICE is starting, the main motor has to crank the ICE via the clutch; the clutch slips to absorb the main motor power, so the main motor has to output a high power to overcome the loss. Therefore, to contribute to reducing the electrical power by eliminating clutch slip losses, we developed an HV starter as a dedicated ICE starting device. Thanks to the reduction in electrical power, the HV starter is able to improve fuel efficiency and reduce system costs.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Compact High-Efficiency 2-Layer Blower Fan for HVAC

2016-04-05
2016-01-0193
In recent years, the spread of eco-car has led to the demand for adaptation to low heat source, high efficiency and low noise in vehicle air conditioner. On the other hand, larger interior space of vehicle to assure passenger comfort is demanded, so that the car air-conditioner is required to be smaller. Therefore, we adopted 2-layer HVAC for the air conditioner which can respond to a low heat source. At the same time we have developed the compact high-efficiency 2-layer blower fan for HVAC in order to enable the 2-layer HVAC to be mounted on eco-car with smaller space than conventional HVAC. Generally, because axial flow velocity increases resulting from downsizing of the blower, the ununiform velocity distribution in the axial direction and the turbulent flow between fan blades occurs. It causes the efficiency decrease. To satisfy both downsizing and high-efficiency of the 2-layer blower, we have developed new technologies which can make the flow uniform between fan blades.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

Cold Storage Air Conditioning System for Idle Stop Vehicle

2013-04-08
2013-01-1287
The number of idle-stop vehicles is rapidly increasing in recent years, and air-conditioning technologies that extend engine stopped time while maintaining the cabin comfort are required. When the engine stops during idle- stop mode, the air conditioner also stops functioning. To maintain cabin comfort, the engine is restarted to work the air-conditioning cycle, which reduces the fuel saving effects. As a countermeasure, a cold storage air conditioning system has been proposed. The system extends engine non-operation time by using cold storage for generating cool air while the engine is stopped. We have integrated this technology into an evaporator, which is used in the air-conditioning cycle, and the system has a short cold storage period and a necessary cold release period. This report describes its concept and effects.
Technical Paper

Development of Diesel Engine using New Fuel Injection System - Direct Monitoring of Fuel Injection Pressure using Injector with Built-in Sensor, and its Applications

2013-04-08
2013-01-1739
Recently, diesel engine manufacturers have been improving the tolerance of fuel injection quantity and timing in response to the strengthening of emissions regulations and the introduction of various kinds of diesel fuels. This paper describes the Intelligent Accuracy Refinement Technology (i-ART) system, which has been developed as a way of achieving substantially improved tolerances. The i-ART system consists of a fuel pressure sensor installed in the injectors. It calculates the injection quantity and timing at high speed using a dedicated microcomputer designed for pressure waveform analysis. As the injector can directly measure the fuel injection pressure waveform for each injection, it can compensate the injection quantity and timing tolerance at any time. Toyota Motor Corporation has introduced this system in Brazilian market vehicles. In Brazil, the PROCONVE L6 emissions regulations will be introduced in 2012, and the market also uses various kinds of diesel fuels.
X