Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effect of Large Droplet and Spanwise Ridge Ice Accretion on the Aerodynamic Performance of Swept Wings

2023-06-15
2023-01-1385
Wind tunnel tests were performed on an 8.9-percent scale semispan wing in the Wichita State University 7x10-foot wind tunnel with simulated ice accretion shapes. Simulated ice shapes from large-droplet clouds, simple-geometry ice horn shapes, and simple-geometry spanwise ridge shapes typical of runback icing were tested. Three Reynolds number and Mach number combinations were tested over a range of angles of attack. Aerodynamic forces and moments were acquired from the tunnel balance and surface pressures and oil flow visualizations were acquired. This research supplements the Swept Wing Icing Program recently concluded by NASA, FAA, ONERA, and their partners by testing new ice shapes on the same wind tunnel model. Additional surface roughness was added to simulate large-droplet ice accretion aft of the highly three-dimensional primary ice shape, and it had little effect on the wing aerodynamic performance.
Technical Paper

Ice Crystal Environment - Modular Axial Compressor Rig: Comparisons of Ice Accretion for 1 and 2 Stages of Compression

2023-06-15
2023-01-1397
In 2021 the Federal Aviation Administration in collaboration with the National Research Council of Canada performed research on altitude ice crystal icing of aircraft engines using the modular compressor rig, ICE-MACR, in an altitude wind tunnel. The aim of the research campaign was to address research needs related to ice crystal icing of aircraft engines outlined in FAA publication Engine Ice Crystal Icing Technology Plan with Research Needs. This paper reports the findings on ice accretion from a configuration of ICE-MACR with two compression stages. Inherent in two-stage operation is not just additional fracturing and heating by the second stage but also higher axial velocity and potentially greater centrifuging of particles. These factors influence the accretion behavior in the test article compared to single stage accretion.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
Technical Paper

A New 1D2D Optical Array Particle Imaging Probe for Airborne and Ground Simulation Cloud Measurements

2023-06-15
2023-01-1415
A new optical array imaging probe, called the 1D2D probe, has been developed by Science Engineering Associates, with features added to improve the real-time and post-analysis measurements of particle spectra, particularly in the Supercooled Large Droplet size range. The probe uses optical fibers and avalanche photodiodes to achieve a very high frequency response, and a Field-Programmable Gate Array that performs real-time particle rejection and processing of accepted particles with negligible inter-particle dead time. The probe records monochromatic two-dimensional images, while also recording the number of individual particle pixels at a second grey scale level. The probe implements flexible features to filter recording of highly out of focus particles to improve the accuracy of particle size determination, or to reject small particles to improve the statistics of measurements of larger particles.
Journal Article

A Psychoacoustic Test for Urban Air Mobility Vehicle Sound Quality

2023-05-08
2023-01-1107
This paper describes a psychoacoustic test in the Exterior Effects Room (EER) at the NASA Langley Research Center. The test investigated the degree to which sound quality metrics (sharpness, tonality, etc.) are predictive of annoyance to notional sounds of Urban Air Mobility (UAM) vehicles (e.g., air taxis). A suite of 136 unique (4.6 second duration) UAM rotor noise stimuli was generated. These stimuli were based on aeroacoustic predictions of a NASA reference UAM quadrotor aircraft under two flight conditions. The synthesizer changed rotor noise parameters such as the blade passage frequency, the relative level of broadband self-noise, and the relative level of tonal motor noise. With loudness constant, the synthesis parameters impacted sound quality in a way that created a spread of predictors both in synthesizer parameters and in sound quality metrics.
Journal Article

Remotely Administered Psychoacoustic Test for sUAS Noise to Gauge Feasibility of Remote UAM Noise Study

2023-05-08
2023-01-1106
The National Aeronautics and Space Administration (NASA) remotely administered a psychoacoustic test in fall of 2022 as the first of two phases of a cooperative Urban Air Mobility (UAM) vehicle noise human response study. This first phase, described here, was a Feasibility Test to compare human subject responses with a previous in-person psychoacoustic test that found an annoyance response difference between small Uncrewed Aerial System (sUAS) noise and ground vehicle noise. This paper discusses the Feasibility Test online layout, sound calibration method, software development, stimuli selection, test subject recruitment, and test administration. Test performance is measured through comparison of annoyance response data with the previous in-person test. The test also investigated whether a contextual cue to test subjects influenced their annoyance response. Response differences between test subjects in geographically distinct areas are analyzed.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Exploitation Strategies of Cabin and Galley Thermal Dynamics

2017-09-19
2017-01-2037
The thermal inertia of aircraft cabins and galleys is significant for commercial aircraft. The aircraft cabin is controlled by the Environment Control System (ECS) to reach, among other targets, a prescribed temperature. By allowing a temperature band of ± 2 K instead of a fixed temperature, it is possible to use this thermal dynamic of the cabin as energy storage. This storage can then be used to reduce electrical peak power, increase efficiency of the ECS, reduce thermal cooling peak power, or reduce engine offtake if it is costly or not sufficiently available. In the same way, also the aircraft galleys can be exploited. Since ECS and galleys are among the largest consumers of electrical power or bleed air, there is a large potential on improving energy efficiency or reducing system mass to reduce fuel consumption of aircraft. This paper investigates different exploitation strategies of cabin and galley dynamics using modelling and simulation.
Technical Paper

Structural Concept of an Adaptive Shock Control Bump Spoiler

2017-09-19
2017-01-2164
Drag reduction technologies in aircraft design are the key enabler for reducing emissions and for sustainable growth of commercial aviation. Laminar wing technologies promise a significant benefit by drag reduction and are therefore under investigation in various European projects. However, of the established moveable concepts and high-lift systems, thus far most do not cope with the requirements for natural laminar flow wings. To this aim new leading edge high-lift systems have been the focus of research activities in the last five years. Such leading edge devices investigated in projects include a laminar flow-compatible Kruger flap [1] and the Droop Nose concept [2, 3] and these can be considered as alternatives to the conventional slat. Hybrid laminar flow concepts are also under investigation at several research institutes in Europe [4].
Technical Paper

Advanced Temperature Control in Aircraft Cabins - A Digital Prototype

2017-09-19
2017-01-2161
For thermal cabin control of commercial aircraft, the cabin is usually divided into a small number of temperature zones. Each zone features its own air supply pipe. The necessary installation space for ducting increases significantly with the number of zones. This requires the number of temperature zones to be low. Factors such as seating layout, galley placement and passenger density result in deviations in heat flux throughout the cabin. These deviations cannot be compensated by the control system, if they occur within the same temperature zone. This work presents a novel temperature regulation concept based on local mixing. In this concept, two main ducts span the complete cabin length, and provide moderately warm and cold air. At each temperature zone, cabin supply air is locally mixed using butterfly valves. In this way, the number of temperature zones can be individually scaled up without any additional ducting, only requiring additional valves for each temperature zone.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Technical Paper

An Investigation into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database

2015-06-15
2015-01-2130
In the last several years, the aviation industry has improved its understanding of jet engine events related to the ingestion of ice crystal particles. Ice crystal icing has caused powerloss and compressor damage events (henceforth referred to as “engine events”) during flights of large transport aircraft, commuter aircraft and business jets. A database has been created at Boeing to aid in analysis and study of these engine events. This paper will examine trends in the engine event database to better understand the weather which is associated with events. The event database will be evaluated for a number of criteria, such as the global location of the event, at what time of day the event occurred, in what season the event occurred, and whether there were local meteorological influences at play. A large proportion of the engine events occur in tropical convection over the ocean.
Technical Paper

HAIC/HIWC Field Campaign - Specific Findings on PSD Microphysics in High IWC Regions from In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes

2015-06-15
2015-01-2087
Despite past research programs focusing on tropical convection, the explicit studies of high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) are rare, although high IWC conditions are potentially encountered by commercial aircraft during multiple in-service engine powerloss and airdata probe events. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The airborne instrumentation included a new reference bulk water content measurement probe and optical array probes (OAP) recording 2D images of encountered ice crystals. The study herein focuses on ice crystal size properties in high IWC regions, analyzing in detail the 2D image data from the particle measuring probes.
Technical Paper

Model-Based Thermal Management Functions for Aircraft Systems

2014-09-16
2014-01-2203
This paper describes a novel Thermal Management Function (TMF) and its design process developed in the framework of the Clean Sky project. This TMF is capable of calculating optimized control signals in real-time for thermal management systems by using model-based system knowledge. This can be either a physical model of the system or a data record generated from this model. The TMF provides control signals to the air and vapor cycle which are possible sources of cooling power, as well as load reduction or shedding signals. To determine an optimal cooling split between air cycle, vapor cycle, and its associated ram air channels, trade factors are being used to make electrical power offtake and ram air usage (i.e. drag) comparable, since both have influence on fuel consumption. An associated development process is being elaborated that enables a fast adaptation of the TMF to new architectures and systems. This will be illustrated by means of a bleedless thermal management architecture.
Technical Paper

Model Based System Level Studies of More Electric Aircraft

2014-09-16
2014-01-2177
Aiming at the global energy optimization of aircraft, the More Electric Aircraft (MEA) concept becomes more interesting for the aeronautical industry. The MEA concept is based on utilizing electric power to drive aircraft subsystems that historically have been driven by a combination of hydraulic, electric, pneumatic and mechanical power transfer systems. The development of the future MEA systems is a challenging task: the system integration is becoming a central topic. In all phases of the system development process, the respective subsystems within the MEA will be treated in a highly integrated manner to achieve optimum efficiency and performance at aircraft and systems level. Concerning the electric network in the future MEA, advanced design and analysis methods based on mathematical models are required to face the potential issues accompanying the MEA. For this purpose, the use of advanced modelling and simulation technologies is a key success factor.
Technical Paper

Optimal Control Allocation for Electric Aircraft Taxi Systems: A Preliminary Study

2014-09-16
2014-01-2137
Demonstrators and research projects about electric aircraft taxi systems testify the current interest in low- or zero-emission ground propulsion technologies to lower the overall fuel consumption and emissions of commercial flights. Electric motors fitted in the main landing gears are one of the most promising layouts for these systems especially for narrow-body commercial aircraft. From a control theory point of view, the aircraft on ground becomes an over-actuated plant through adoption of this technology, i.e. a commanded ground trajectory can be reached through different combinations of actuator efforts. A strategy is required to choose the most suitable of these combinations in order to reach the best efficiency. This work aims to investigate a strategy for an optimal control allocation during path-following of prescribed ground trajectories.
Technical Paper

Assessment of Ear- and Tooth-Mounted Accelerometers as Representative of Human Head Response

2013-04-08
2013-01-0805
Monitoring head accelerations as an indicator of possible brain injury may lead to faster identification of injury and treatments. This study investigates the skull-coupling of a tri-axial accelerometer mounted to a back molar and compares it with a tri-axial accelerometer inserted in the boney ear canal. These tri-axial accelerometers were mounted to three post mortem human surrogate (PMHS) skulls, and compared with a rigid, skull-mounted laboratory sensor reference cube. Each specimen was subjected to both a high-g loading from a vertical drop tower and a low frequency cyclic loading from a shaker device. The specimens were subjected to an approximate 150g input acceleration on the drop tower, and up to 10g at a frequency of 9Hz on the shaker device. Each specimen was tested on all three of the anatomical axes on both the drop tower and the cyclic shaker.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Journal Article

Assessing Environmental Benefits of Electric Aircraft Taxiing through Object-Oriented Simulation

2012-10-22
2012-01-2218
A number of promising technologies to perform ground movements without main engines are currently being researched. Notably, onboard ground propulsion systems have been proposed featuring electric motors in the landing gear. While such on-board systems will help save fuel and avoid emissions while on ground, they add significant weight to the aircraft, which has an impact on the performances in flight. A tool to assess the global benefits in terms of fuel consumption and emissions is presented in this work. A concept of an aircraft-integrated ground propulsion system is firstly considered and its performances and weights are determined, assuming the Auxiliary Power Unit or a zero-emission device like a fuel-cell as power source for the system. Afterwards, a model of the propulsion system integrated into an object-oriented, mid-sized aircraft model is generated, capable of precisely simulating a whole aircraft mission.
X