Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Single Stage Input Coupled Split Power Transmission Arrangements and their Characteristics

2002-03-04
2002-01-1294
In recent years there has been an increased interest in the continuously variable split power transmissions as these drive units are capable of vehicle launches and directional changes without using clutches. These tasks are accomplished by appropriately splitting power between the fixed mechanical and variable ratio branches. The power is recombined at the transmission output. A properly designed split power transmission arrangement will improve vehicular agility and reduce variator size. This paper provides characteristics of six single stage input coupled continuously variable toroidal split power transmission arrangements. Mathematical equations are derived for speed, torque and power. A computer program that utilizes the capabilities of Matlab is developed. The program calculates the required fixed and variable branch gear ratios for the predefined variator, planetary and overall transmission ratios.
Technical Paper

Development of Dual Stage Input Coupled Split Power Transmission Arrangements and their Characteristics

2002-03-04
2002-01-0590
Continuously variable split power transmissions can offer a clutchless transition from reverse through neutral and into the forward driving mode. This is accomplished by splitting the input power between fixed ratio and variable ratio branches and recombining the power with a planetary set. Further, these transmissions offer seamless ratio changes throughout their range. In contrast to these benefits, single stage designs can suffer from recirculated power, which increases the power level through the variator. This results in the need for a larger variator, which reduces efficiency and increases weight and inertia. In addition, single stage designs can experience high planetary member speeds as a result of a wide transmission ratio range. Seven dual stage input coupled transmission models are developed in an effort to reduce the recirculated power and high planetary member speeds found in the single stage designs. Speed, torque and power models are developed in Matlab and Excel.
X