Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

Durability of Low-Emissions Small Off-Road Engines

2004-09-27
2004-32-0058
The goal of the project was to reduce tailpipe-out hydrocarbon (HC) plus oxides of nitrogen (NOx) emissions to 50 percent or less of the current California Air Resources Board (CARB) useful life standard of 12 g/hp-hr for Class I engines, or 9 g/hp-hr for Class II engines. Low-emission engines were developed using three-way catalytic converters, passive secondary-air induction (SAI) systems, and in two cases, enleanment. Catalysts were integrated into the engine's mufflers, where feasible, to maintain a compact package. Due to the thermal sensitivity of these engines, carburetor calibrations were left unchanged in four of the six engines, at the stock rich settings. To enable HC oxidation under such rich conditions, a simple passive supplemental air injection system was developed. This system was then tuned to achieve the desired HC+NOx reduction.
Technical Paper

Emissions From Snowmobile Engines Using Bio-based Fuels and Lubricants

1997-10-27
978483
Snowmobile engine emissions are of concern in environmentally sensitive areas, such as Yellowstone National Park (YNP). A program was undertaken to determine potential emission benefits of use of bio-based fuels and lubricants in snowmobile engines. Candidate fuels and lubricants were evaluated using a fan-cooled 488-cc Polaris engine, and a liquid-cooled 440-cc Arctco engine. Fuels tested include a reference gasoline, gasohol (10% ethanol), and an aliphatic gasoline. Lubricants evaluated include a bio-based lubricant, a fully synthetic lubricant, a high polyisobutylene (PIB) lubricant, as well as a conventional, mineral-based lubricant. Emissions and fuel consumption were measured using a five-mode test cycle that was developed from analysis of snowmobile field operating data.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
X