Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Technical Paper

Life Estimation of Rolling Bearings Based on the Colors on Sliding Surfaces

2019-04-02
2019-01-0180
It is experimentally known that the surface color of bearing balls gradually becomes brown during long term operation of the bearings under appropriate lubrication conditions. That exhibits the possibility of an estimation method for residual life of ball bearings without any abnormal wear on the surfaces by precise color measurements. Therefore, we examined what set colors on bearing balls by surface observation using scanning electron microscopy and subsurface analysis using transmission electron microscopy. Results showed that an amorphous carbon layer had gradually covered ball surfaces during operation of the bearings. The layer not only changed ball color but also made overall ball shapes closer to a complete sphere. The report also introduces a uniquely developed color analyzer which enabled color measurements on metallic surfaces, such as the above-mentioned balls.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of Joint Sheet Gasket with Reduced Amount of Aramid Fibers

2018-10-30
2018-32-0026
Gaskets made of joint sheet are widely used for mating surfaces in engines and transmissions. Before the regulation was issued for restrictions of asbestos usage as a hazardous substance, Honda had already developed non-asbestos joint sheets using aramid fibers substituting for asbestos and started applying them to the products sold worldwide. However, aramid fiber is significantly expensive but, on the other hand, the amount of aramid fiber mixed in a joint sheet will largely influence the sealing performance. Thus, when aramid fiber is applied, cost increase becomes a concern. With this background, a gasket material was designed for reducing the cost without sacrificing the required reliability as a joint sheet assuming the actual applications. The cost was reduced mainly by reducing the amount of aramid fibers used.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

2018-04-03
2018-01-0984
The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Atomization in High-Pressure Die Casting - Step 2 Simulation of Atomized Flow of Molten Aluminum by LES-VOF Method

2018-04-03
2018-01-1393
The atomization of molten aluminum when injected during high-pressure die casting is analyzed to determine its effect in enhancing the strength of the product being cast. In the previously reported first step of this study, molten aluminum was injected into open space and its atomization was observed photographically. Now in the second step of the study, a simulation is conducted to determine how the molten aluminum becomes atomized at the injection nozzle (gate) and how this atomized material flows and fills the cavity. A new simulation method is developed based on large-eddy simulation coupled with the volume-of-fluid method. The simulation system is verified by comparing its output with photographs taken in the first step of the study. Simulations are then conducted using an approximation of a real cavity to visualize how it is filled by the atomized molten aluminum.
Technical Paper

Research of Atomization Phenomena in HPDC-Step 1 Feature of Gas Porosity Dispersion and Photography of Atomized Flow

2018-04-03
2018-01-1392
In recent years, studies have been conducted on the relationship between the J factor, which indicates flow of molten aluminum at the time of injection, and the quality of HPDC products. The flow of molten metal at a high J factor is referred to as “Atomized Flow.” The authors and others conducted studies on the relationship between the J factor and the strength of HPDC products. An area exceeding 300MPa was found in the product produced at a high J factor corresponding to the “Atomized Flow.” The defect was less in the above-mentioned position because the gas porosity was finely dispersed. Considering that the fine dispersion of gas porosity is related to the “Atomized Flow”, pictures were taken to analyze “Atomized Flow.” The molten aluminum was ejected into an open space at a high speed and the splashed conditions were photographed. From the images taken by the pulse laser permeation, the conditions of microscopic atomized flow were observed precisely.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

2016-04-05
2016-01-1223
A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Journal Article

Fretting Analysis of an Engine Bearing Cap Using Computer Simulation

2016-04-05
2016-01-1083
The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-04-14
2015-01-0694
The strength characteristic of CFRP composite materials is often dependent on the internal micro-structural fracture mode. When performing a simulation on composite structures, it is necessary to take the fracture mode into account, especially in an automobile body structure with a complex three-dimensional shape, where inter-ply fractures tend to appear due to out-of-plane load inputs. In this paper, an energy-based inter-ply fracture model with fracture toughness criteria, and an intra-ply fracture model proposed by Ladeveze et al. were explained. FEM analyses were performed on three-dimensional test specimens applying both fracture models and the simulated results were compared with experimental ones. Reproducibility of the fracture mode was confirmed and the importance of combining both models was discussed.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
X