Refine Your Search

Topic

Author

Search Results

Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Natural-Gas Direct-Injection for Spark-Ignition Engines - A Review on Late-Injection Studies

2017-01-10
2017-26-0067
Significant research has been made on traditional pre-mixed charge Spark-Ignition Natural-Gas engines which have seen widespread usage across the automotive sector. Many researchers including those in industry are now exploring the Direct-Injection concept for Natural-Gas Spark-Ignition engines. Direct-Injection has significant performance benefits over port-fuel injection, primarily due to increased volumetric efficiency as a result of injecting the fuel after intake valve closure. This could lead to enhanced driving performance over port-fuel injection comparable to gasoline engines. Furthermore, Direct-Injection with increased compression ratio in conjunction with downsizing concepts has the potential to increase thermal efficiency while exhibiting significantly lower CO2 emissions. Advanced combustion strategies like stratified mixture combustion has been widely studied for gasoline and proven to increase the low load thermal efficiency over homogeneous stoichiometric combustion.
Journal Article

Derived Cetane Number, Distillation and Ignition Delay Properties of Diesel and Jet Fuels Containing Blended Synthetic Paraffinic Mixtures

2016-10-24
2016-01-9076
Aviation turbine fuel and diesel fuel were blended with synthetic paraffins produced via two pathways and the combustion properties measured. Both aviation and diesel fuel containing synthetics produced from the fermentation of sugars, had a linear response to blending with decreasing ignition delay times from 5.05 - 3.52 ms for F-34 and 3.84 - 3.52 ms for F-76. For the same fuels blended with synthetics produced from the fermentation of alcohols, ignition delay times were increased out to 18.66 ms. The derived cetane number of the blends followed an inversely similar trend. Additionally, simulated distillation using ASTM D2887 at high synthetic paraffinic kerosene blend ratios resulted in the recovery temperatures being incorrectly reported. In this case, higher recovery volumes were at lower temperatures than earlier recovery points i.e. T90< T50, for SIP-SPK.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Air Entrainment in Gaseous Fuel Jets Using Particle Image Velocimetry and High Speed Schlieren Photography in a Constant Volume Chamber

2015-04-14
2015-01-0938
The air entrainment process of a compressed natural gas transient fuel jet was investigated in a constant-volume chamber using Schlieren and particle image velocimetry (PIV) techniques. A new method of calculating air entrainment around a gaseous fuel jet is proposed using Schlieren and PIV imaging techniques. This method offers an alternative to calculation of an alternative to calculation of entrainment using LIF technique in gaseous fuel jets. Several Jet-ambient pressure ratios were tested. In each test, nitrogen was used to fill the chamber as an air surrogate before the jet of natural gas was injected. Schlieren high speed videography and PIV experiments were performed at the same conditions. Schlieren mask images were used to accurately identify the jet boundary which was then superimposed onto a PIV image. Vectors adjacent to the Schlieren mask in the PIV image were used to calculate the spatial distribution of the air entrainment at the jet boundary.
Technical Paper

A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels

2015-03-10
2015-01-0007
Hydrogen Internal Combustion Engine (ICE) vehicles using a traditional ICE that has been modified to use hydrogen fuel are an important mid-term technology on the path to the hydrogen economy. Hydrogen-powered ICEs that can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG) are a way of addressing the widespread lack of hydrogen fuelling infrastructure in the near term. Hydrogen-powered ICEs have operating advantages as all weather conditions performances, no warm-up, no cold-start issues and being more fuel efficient than conventional spark-ignition engines. The Wankel engine is one of the best ICE to be converted to run hydrogen. The paper presents some details of an initial investigation of the CAD and CAE modeling of a novel design where two jet ignition devices per rotor are replacing the traditional two spark plugs for a faster and more complete combustion.
Technical Paper

Numerical Investigation of Dual Fuel Diesel-CNG Combustion on Engine Performance and Emission

2015-03-10
2015-01-0009
With the purpose of reducing emission level while maintaining the high torque character of diesel engine, various solutions have been proposed by researchers over the world. One of the most attractive methods is to use dual fuel technique with premixed gaseous fuel ignited by a relatively small amount of diesel. In this study, Methane (CH4), which is the main component of natural gas, was premixed with intake air and used as the main fuel, and diesel fuel was used as ignition source to initiate the combustion. By varying the proportion of diesel and CH4, the combustion and emissions characteristics of the dual fuel (diesel/CH4) combustion system were investigated. Different cases of CFD studies with various concentration of CH4 were carried out. A validated 3D quarter chamber model of a single cylinder engine (diesel fuel only) generated by using AVL Fire ESE was modified into dual fuel mode in this study.
Technical Paper

Reducing Automobile CO2 Emissions with an Exhaust Heat Recovery System Utilising Thermoelectric Generators and Heat Pipes

2015-03-10
2015-01-0051
Exhaust heat recovery systems are used to make use of otherwise wasted heat from a car engine. The purpose of exhaust heat recovery systems is to reduce the fuel consumption of the car and consequently reduce CO2 emissions. The unique system design described herein utilises thermoelectric generators (TEGs) and heat pipes with its key advantage being it is a passive solid state design. The use of these components creates a few design constraints. For example, both the TEGs and heat pipes have operating temperature limitations. In this paper, a naphthalene heat pipe preheat exchanger is proposed to deal with this problem. Exhaust conditions measured from a representative spark ignition engine were used in a numerical simulation to predict the performance of the exhaust heat recovery system. If 8 modules are used and the engine is producing 8kW of mechanical power, the system is predicted to produce 53.75W of electrical power.
Technical Paper

Advances in Combustion Systems for Gas Engines

2013-11-27
2013-01-2751
The paper presents a novel concept of a very efficient transportation engines for operation with CNG, LNG or LPG. The paper considers the options of single fuel design with jet ignition and dual fuel design with Diesel and gas. In the first option gas fuel is injected into the main chamber by a direct injector and ignited by jet ignition. In the second option gas fuel is injected into the main chamber by a direct injector and ignited by the direct injection of a small quantity of Diesel fuel. Injection and ignition may be tuned to control the amount of premixed and diffusion combustion to produce the best fuel conversion efficiency vs. load and speed requirements within the prescribed pressure and temperature constraints.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

2013-11-27
2013-01-2772
The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

CNG Fueling Strategies for Commercial Vehicles Engines-A Literature Review

2013-11-27
2013-01-2812
The paper presents a survey of the opportunities to convert compression ignition heavy duty truck engines to work on single or dual fuel modes with CNG. In one popular option, the compression ignition engine is converted to spark ignition with throttle load control and port injection of the CNG. In another option of increasing popularity, the LNG is directly injected and ignited by direct injection of pilot Diesel. This latter option with direct injection of natural gas and diesel through separate injectors that are fully independent in their operation is determined to be the most promising, as it is expected to deliver better power density and similar part load fuel economy to Diesel.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

Advances in Waste Heat Recovery Systems for Gas Engines

2013-09-24
2013-01-2433
The paper presents a novel concept of very efficient transportation engines for operation with CNG, LNG or LPG. The combustion system permits mixed diesel/gasoline-like operation changing the load by quantity of fuel injected and modulating the premixed and diffusion combustion phases for high fuel energy transfer to piston work. A waste heat recovery system (WHRS) is then recovering the intercooler and engine coolant energy plus the exhaust energy. The WHRS uses a power turbine on the exhaust and a steam turbine feed by a single loop turbo-steamer. The WHRS is the enabler of much faster warm up of the engine and further improvements of the top fuel conversion efficiency to above 50% for the specific case with reduced fuel efficiency penalties changing the load or the speed.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

Transportation Fuels for the Future

2006-10-16
2006-21-0089
This paper analyzes the availability of fossil resources and the projected demand development for transport energy. A continuation of current trends would lead to a gap between fuel supply and demand in 10 to 15 years from now. Based on the 3 political key criteria (security of energy supply, greenhouse gas emission reductions, strengthening of the economy) potential alternative fuels are screened and analyzed according to their contributions towards these political goals. A scenario for the development of future fuels is presented.
X