Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Holistic Approach to Next-Generation Polymer Composite Pickup Bed Development and Prototyping

2024-04-09
2024-01-2432
As we move toward electrification in future mobility, weight and cost reduction continue to be priorities in vehicle development. This has led to continued interest in advanced molding processes and holistic design to enable polymer materials for demanding structural applications such as pickup truck beds. In addition to performance, it is necessary to continue to improve styling, functionality, quality, and sustainability to exceed customer expectations in a competitive market. To support development of a lightweight truck bed design, a cross-functional team objectively explored the latest materials and manufacturing technologies relevant to this application. In Phase 1 of this work, the team considered a variety of alternatives for each functional area of the bed, including thermoplastic and thermoset materials with a range of processing technologies.
Technical Paper

Smart Pneumatic Control System Development for Reducing Passenger Fatigue

2023-04-11
2023-01-0913
The recent technological development trend in the automobile market is in the huge flow of MECA (Mobility, Electrification, Connectivity, Autonomous). The role of the seat is to provide convenience functions in addition to providing safe and comfortable performance. The development of autonomous driving technology reduces fatigue during long-term driving, but on the contrary, the risk of drowsy driving due to overconfidence in the autonomous driving system is increasing. In this study, the massage function was developed by utilizing the existing pneumatic system, and the contents of research on objectification through medical verification of the effect of preventing drowsy driving and recovering from fatigue due to long-term driving are described.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Journal Article

Development of a Generalized Model to Predict Efficiency of Electrified Power Transmission Considering Optimal Driving Efficiency

2022-03-29
2022-01-0641
Over the last decade the electrified powertrain has been expanded due to strict fuel efficiency regulations, which leads to the development of various powertrain systems. It is recent trend to improve the overall system efficiency in which various power sources such as ICE and motor are combined with a simple gearbox. Accordingly, it is becoming indispensable to analyze the efficiency of the entire system from the initial stage of system development. In this study, a generalized numerical model is developed to predict the loss of gearbox under various power sources and power flows. This numerical model newly applied generalized equations for additional various power transmissions, including the previously verified power loss equation of gearbox components. In addition, for a reasonable and objective efficiency comparison between gearboxes, the optimal operating points are calculated in consideration of the overall powertrain system efficiency covering the total vehicle load.
Technical Paper

A Study on Optimization of Brake Feeling and Method for Flexible Brake with Integrated Electronic Booster

2020-10-05
2020-01-1642
Throughout the automotive industry, the application of an integrated electronic booster (IEB) system has been actively applied following with diversify powertrain types and expand autonomous vehicles.[1, 2] Compared to the existing vacuum boosters, the performance advantages of IEB are 1) robustness against environmental changes, 2) rapid hydraulic reactivity, etc., and the advantages of cost / university are 1) flexibility for powertrain changes 2) weight saving 3) package simplification. Although IEB has a great advantage in performance and cost, it still needs a lot of research in various fields to realize the braking feeling, which is the performance of the emotional aspect, similar to the existing system. [3, 4]
Journal Article

Evaluation Methodologies in the Development of Dynamically Reconfigurable Systems in the Automotive Industry

2020-04-14
2020-01-1363
Classical decentralized architectures based on large networks of microprocessor-based Electronic Control Units (ECU), namely those used in self-driving cars and other highly-automated applications used in the automotive industry, are becoming more and more complex. These new, high computational power demand applications are constrained by limits on energy consumption, weight, and size of the embedded components. The adoption of new embedded centralized electrical/electronic (E/E) architectures based on dynamically reconfigurable hardware represents a new possibility to tackle these challenges. However, they also raise concerns and questions about their safety. Hence, an appropriate evaluation must be performed to guarantee that safety requirements resulting from an Automotive Safety Integrity Level (ASIL) according to the standard ISO 26262 are met. In this paper, a methodology for the evaluation of dynamically reconfigurable systems based on centralized architectures is presented.
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

2019-06-05
2019-01-1511
In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Design, Development and Integration of a Wing-Morphing, Bimodal Unmanned Vehicle

2018-10-30
2018-01-1960
This paper relates to the design and development of a multi-modal UAV capable of aerial flight and underwater propulsion. A novel hybrid propulsion system has been manufactured and tested. Consisting of folding blades, the propeller has been optimized for propulsion both in air and water. The critical water to air transition phase is achieved by an additional impulsive thruster powered by a C02 cartridge. To decrease the drag in underwater cruise and reduce the potential damage when the vehicle impacts the water, a morphing wing has been developed. This consists of foam-carbon fiber lay-up constructed wings in a variable sweep configuration. The actuation of the sweep is achieved by linear servos mounted on the sleeve shaped spar. An integrated prototype is constructed, using an unconventional, anhedral horizontal stabilizers to allow clearance for the morphing wing.
Technical Paper

Development of an Analysis Program to Predict Efficiency of Automotive Power Transmission and Its Applications

2018-04-03
2018-01-0398
Prediction of power efficiency of gear boxes has become an increasingly important research topic since fuel economy requirements for passenger vehicles are more stringent, due to not only fuel cost but also environmental regulations. Under this circumstance, the automotive industry is dedicatedly focusing on developing a highly efficient gear box. Thus, the analysis of power efficiency of gear box should be performed to have a transmission that is highly efficient as much as possible at the beginning of design stage. In this study, a program is developed to analyze the efficiency of an entire gearbox, considering all components’ losses such as gear mesh, wet clutches, bearings, oil pump and so on. The analytical models are based on the formulations of each component power loss model which has been developed and published in many existing papers. The program includes power flow analysis of both a parallel gear-train and a planetary gear-train.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Natural-Gas Direct-Injection for Spark-Ignition Engines - A Review on Late-Injection Studies

2017-01-10
2017-26-0067
Significant research has been made on traditional pre-mixed charge Spark-Ignition Natural-Gas engines which have seen widespread usage across the automotive sector. Many researchers including those in industry are now exploring the Direct-Injection concept for Natural-Gas Spark-Ignition engines. Direct-Injection has significant performance benefits over port-fuel injection, primarily due to increased volumetric efficiency as a result of injecting the fuel after intake valve closure. This could lead to enhanced driving performance over port-fuel injection comparable to gasoline engines. Furthermore, Direct-Injection with increased compression ratio in conjunction with downsizing concepts has the potential to increase thermal efficiency while exhibiting significantly lower CO2 emissions. Advanced combustion strategies like stratified mixture combustion has been widely studied for gasoline and proven to increase the low load thermal efficiency over homogeneous stoichiometric combustion.
Journal Article

Derived Cetane Number, Distillation and Ignition Delay Properties of Diesel and Jet Fuels Containing Blended Synthetic Paraffinic Mixtures

2016-10-24
2016-01-9076
Aviation turbine fuel and diesel fuel were blended with synthetic paraffins produced via two pathways and the combustion properties measured. Both aviation and diesel fuel containing synthetics produced from the fermentation of sugars, had a linear response to blending with decreasing ignition delay times from 5.05 - 3.52 ms for F-34 and 3.84 - 3.52 ms for F-76. For the same fuels blended with synthetics produced from the fermentation of alcohols, ignition delay times were increased out to 18.66 ms. The derived cetane number of the blends followed an inversely similar trend. Additionally, simulated distillation using ASTM D2887 at high synthetic paraffinic kerosene blend ratios resulted in the recovery temperatures being incorrectly reported. In this case, higher recovery volumes were at lower temperatures than earlier recovery points i.e. T90< T50, for SIP-SPK.
Technical Paper

Designing Sound for Quiet Cars

2016-06-15
2016-01-1839
The quiet nature of hybrid and electric vehicles has triggered developments in research, vehicle manufacturing and legal requirements. Currently, three countries require fitting an Approaching Vehicle Alerting System (AVAS) to every new car capable of driving without a combustion engine. Various other geographical areas and groups are in the process of specifying new legal requirements. In this paper, the design challenges in the on-going process of designing the sound for quiet cars are discussed. A proposal is issued on how to achieve the optimum combination of safety, environmental noise, subjective sound character and technical realisation in an iterative sound design process. The proposed sound consists of two layers: the first layer contains tonal components with their pitch rising along with vehicle speed in order to ensure recognisability and an indication of speed.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Development of a Template Safety Case for Unmanned Aircraft Operations Over Populous Areas

2015-09-15
2015-01-2469
One of the primary hazards associated with the operation of Unmanned Aircraft (UA) is the controlled or uncontrolled impact of the UA with terrain or objects on the terrain (e.g., people or structures). National Aviation Authorities (NAAs) have the responsibility of ensuring that the risks associated with this hazard are managed to an acceptable level. The NAA can mandate a range of technical (e.g., design standards) and operational (e.g., restrictions on flight) regulatory requirements. However, work to develop these regulations for UA is ongoing. Underpinning this rule-making process is a safety case showing how the regulatory requirements put in place ensure that the UA operation is acceptably safe for the given application and environment.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

2015-09-15
2015-01-2453
Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
X