Refine Your Search

Topic

Search Results

Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

Transportation Fuels for the Future

2006-10-16
2006-21-0089
This paper analyzes the availability of fossil resources and the projected demand development for transport energy. A continuation of current trends would lead to a gap between fuel supply and demand in 10 to 15 years from now. Based on the 3 political key criteria (security of energy supply, greenhouse gas emission reductions, strengthening of the economy) potential alternative fuels are screened and analyzed according to their contributions towards these political goals. A scenario for the development of future fuels is presented.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Potentials of the Spray-Guided BMW DI Combustion System

2006-04-03
2006-01-1265
The spray-guided BMW DI combustion system eliminates the most important disadvantages of the wall-and air-guided 1st generation DI combustion systems. With its central injector position, the spray-guided system provides a stratified mixture at the spark plug and reduces wall wetting significantly. The low spray penetration and high spray stability of the outward-opening piezo injector allow an extension of the stratified engine map to higher engine load and speed. The piezo drive permits an extremely fast opening of the injector needle, thus enabling multiple injections with very short delay times and high flexibility for the calibration strategy to supply a very efficient combustion with low unburnt hydrocarbon and carbon monoxide emissions. Compared to a conventional throttled SI engine, the spray-guided system shows a fuel consumption potential of about 20% in the NEDC.
Technical Paper

Enhanced VALVETRONIC Technology for Meeting SULEV Emission Requirements

2006-04-03
2006-01-0849
BMW VALVETRONIC technology is able to maintain the most important measures to reduce emissions. The further optimized charge movement created by VALVETRONIC stabilizes the combustion in the catalyst heating mode with extremely retarded ignition timing. When the engine is warm the high residual gas tolerance ensures very low Engine-Out NOx emissions and at the same time a low level of hydrocarbons. The atomization of fuel droplets due to high flow velocity in the valve gap area leads to improved mixture formation and reduced wall wetting. Engine-Out HC emissions in a cold engine are therefore reduced. Combined, the emission measures achieve robust and efficient emission control. In combination with additional after-treatment like secondary air system and catalysts using high cell density VALVETRONIC engines form an excellent base for SULEV emission regulations without neglecting the typical BMW claim of efficient dynamics.
Technical Paper

PGM Optimization by Robust Design

2005-10-24
2005-01-3849
A Robust Engineering experiment was performed to determine the effects PGM loading and placement on the FTP emissions of a 4 cylinder 2.4L and two 8 cylinder 4.7L vehicles. 1.3L catalytic converters were used containing a front and rear catalyst of equal volume. The experiment is defined by a Taguchi L-8 array. Eight different combinations of catalyst PGM loadings were aged and evaluated. Results show that nmHC and NOx emissions are predominately affected by the PGM loading of the front catalyst. The rear catalyst is insensitive to either Pt or Pd which can be used at low concentrations. Results also compare the benefits of Pd and Rh to reduce emissions. Confirmation runs suggest that significant reductions in PGM cost can be achieved over baseline designs.
Technical Paper

Improving Direct Vehicle Exhaust Flow Measurement

2005-04-11
2005-01-0686
Measuring vehicle exhaust volumetric flow rate accurately and precisely is critical in calculating the correct vehicle modal and bag mini-diluter exhaust emission constituent masses. It is also instrumental in engine calibration practices. Currently, DaimlerChrysler's Emission and Certification Lab in Auburn Hills, Michigan utilizes constant volume sampling bag systems to certify vehicles but the automotive technological trend is heading toward the bag mini-diluter for greater precision at low emission levels. The bag mini-diluters, as well as the modal sampling system, used extensively in vehicle development testing, rely on exhaust flow rate measurement by means of a direct vehicle exhaust flow meter named E-Flow. The E-Flow has few limitations such as flow profile instability at low idle flow rates and reaction to resonating pressure waves in the exhaust system.
Technical Paper

FlexMetal Catalyst Technologies

2005-04-11
2005-01-1111
A new family of automotive three-way conversion (TWC) catalyst technologies has been developed using a Precision Metal Addition (PMA) process. Precious metal (PGM) fixation onto the support occurs during the PMA step when the PGM is added to the slurry immediately prior to application to the monolith substrate. PMA slurries can be prepared with high precision and the slurry manufacturing process is greatly simplified. Further, it has been found that with the use of new generation washcoat (WC) materials, the same WC composition can be used for all three PGMs - Pt, Pd & Rh. Negative interactions between Pd and Rh in the same WC layer do not occur, providing advantages over older technologies. Thus, new WC compositions coupled with the PMA process offers precious metal flexibility. This FlexMetal family of catalyst technologies includes single layer Pd-only, Pd/Rh and Pt/Rh and dual layer bi-metal Pd/Rh and Pt/Rh and tri-metal Pt/Pd/Rh.
Technical Paper

Development of Vehicle Exhaust Flow Measurement Calibration Device

2004-03-08
2004-01-1436
Vehicle exhaust flow is difficult to measure accurately and with high precision due to the highly transient nature of the cyclic events which are dependent on engine combustion parameters, varying exhaust gas compositions, pulsation effects, temperature and pressure. Bag mini-diluter (BMD) is becoming one of the few technologies chosen for SULEV and PZEV exhaust emission measurement and certification. A central part of the BMD system is an accurate and reliable exhaust flow measurement which is essential for proportional bag fill. A new device has been developed to accurately and reliably calibrate exhaust flow measurement equipments such as the E-Flow. The calibration device uses two different size laminar flow elements (LFE), a 40 CFM (1.13 m3/min) LFE for low end calibration and a 400 CFM (11.32 m3/min) LFE for higher flows. A blower is used to push flow through a main flow path, which then divides into two flow pathways, one for each of the two LFE's.
Technical Paper

Bag Mini-Diluter System Diagnostics

2004-03-08
2004-01-1438
Automakers in the United States have started using bag mini-diluters (BMD) for developing, testing and certifying vehicles, to meet PZEV and SULEV regulation requirements. The BMD system which is a new technology developed by AIGER, is being used as an alternative to the traditional CFV/CVS system for accurate ultra low-level emission measurement. BMD system has shown to have considerable advantage over CFV/CVS system, especially at ULEV/SULEV emission levels. This paper details modifications and diagnostic checks conducted with the existing BMD system at the DaimlerChrysler Tech Center emissions facility, Auburn Hills, Michigan. This paper also discusses possible scenarios where the BMD system at DaimlerChrysler could give erroneous results due to system setup, optimization issues and equipment limitations.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-03-04
2002-01-0066
In the near future the effort on the development of exhaust gas treatment systems must be increased to meet the stringent emission requirements. If the relevant physical and chemical models are available, the numerical simulation is an important tool for the design of these systems. This work presents a CFD model that allows to cover the full range of applications in this area. After a detailed presentation of the theoretical background and the modeling strategies results for the simulation of a close-coupled catalyst are shown. The presented model is also applied to the oxidation of nitrogen oxides, to a diesel particle filter and a fuel-cell reformer catalyst.
Technical Paper

New Design of Ultra High Cell Density Metal Substrates

2002-03-04
2002-01-0353
To meet the most stringent emissions standards such as Super Ultra Low Emission Vehicle (SULEV) in California, substrates with high cell densities and ultra thin foils are needed, mounted in a close-coupled position. A new substrate design has been developed incorporating increased thermal and mechanical load in association with reduced thermal mass and improved heat transfer due to higher cell density. This paper describes the development of the new design using finite element calculation and practical test results from component and engine test benches.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

New Catalyst Preparation Procedure for OBDII-Monitoring Requirements

2001-03-05
2001-01-0933
In order to match catalyst OBDII conditions the common procedure is oven aging with air, which is not suitable for complete converter systems due to mantle corrosion. The goal was, therefore, to find an alternative procedure to ensure a defined catalyst aging that would match 1,75 times the emission standard and is also good for SULEV. The new procedure currently being developed allows the aging of metal and ceramic catalysts as well as complete catalyst systems. The paper will present the aging process, emission data of fresh and aged catalysts and the feedback to the test car OBDII system.
Technical Paper

A Comparison of Conversion Efficiency and Flow Restriction Performance of Ceramic and Metallic Catalyst Substrates

2001-03-05
2001-01-0926
Catalyst systems utilizing ceramic and metallic substrates were compared to assess the influence of various substrate parameters on the exhaust gas conversion efficiency and flow restriction. In particular, the substrate surface area, substrate specific heat capacity, and substrate volume were all evaluated for their importance in estimating the conversion efficiency of the catalyst system. Additionally, substrate open frontal area and cell hydraulic diameter were compared against exhaust restriction performance.
X