Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Microstructure and Mechanical Properties of Welded Thermoplastics

2004-03-08
2004-01-0732
Thermoplastics have been used increasingly for automobile components for both interior and under-the-hood applications. The plastic parts are made through various molding process such as compression molding, injection molding and blow molding. For parts with large or complicated geometry, small portions of the part may have to be molded first, then joined together using a welding process. The welded regions usually exhibit inhomogeneous and inferior mechanical performance compared to the bulk regions due to the differences in thermal history. The microstructures and mechanical properties of welded thermoplastics have been examined using hot-plate welded polyethylene. The specimens are prepared at various thermal conditions to simulate the real welding process. The thermal properties in welds are monitored using DSC (Differential Scanning Calorimetry) and the crystallinities are calculated.
Technical Paper

Piston Ring Cylinder Liner Scuffing Phenomenon: Investigation, Simulation and Prevention

1999-03-01
1999-01-1219
In spite of being a popular topic in technical publications, scuffing between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This paper will discuss results of metallurgical and metrological (post-mortem) examinations of the scuffing between hard and soft cylinder liners and different piston ring coatings after field, engine and bench testing. Detailed metallurgical analysis describes the lubricity mechanism between various piston ring coatings and iron cylinder liner at different temperatures with and without oil. The paper will explain the origin of the scuffing through lack of or inadequate lubrication at top dead center, particularly for hardened iron heavy-duty diesel cylinder liners.
Technical Paper

Variability of Test Specimens Used for Evaluating Light Duty Automotive Filter Seal Materials

1999-03-01
1999-01-0001
Quality control and materials development of cellular polyurethane foam used in light-duty automotive air filter seals rely on measurement of mechanical and physical properties such as tensile strength, elongation, compression set, specific gravity, and durometer hardness. These properties are typically measured on specimens cut from slabs formed in preheated closed molds. However, these slabs are nonuniform in specific gravity, and property measurements vary with location within a slab. The effect of sampling location on mechanical and physical properties is discussed.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

1997-02-24
970835
The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

Hydraulic Safety Valve Design Using PC Simulation

1996-08-01
961835
In today's global fluid power industry, successful hydraulic component manufacturers must utilize technical resources to maintain a competitive edge. When designing new products, past practice required an understanding of engineering theory and reliable and accurate lab and field testing of new products, but today's designers have a new tool at their disposal. Personal computer based software can be used to model and simulate individual hydraulic components or entire systems before prototypes are available for design and performance evaluation. This paper discusses the design of a hydraulic safety valve and how PC simulation was used to design and analyze valve performance during the design process.
Technical Paper

An Overview of Microalloyed Steels, Part II: Their Mechanical Behavior

1996-02-01
960309
Microalloyed (MA) steels have been developed as economical alternatives to the traditional quenched and tempered (QT) steels. The physical metallurgy principles underlying their basic composition-processing-microstructure-property interrelationships have been reviewed in the first part of the review. In this second part of the review, mechanical properties as well as fabrication properties, such as mahinability, weldability, and formability, are discussed. Flat products (such as strips, sheets, and plates), long products (including bars, rods, sections/profiles), and forging articles made of MA steels are investigated. Since most engineering components made of these steels are subjected to cyclic loading, fatigue and fracture performance of MA steels and their comparison with the QT steels are also evaluated in this review.
Technical Paper

Rapid Prototyping Shortens Hydraulic Component Development Time

1995-09-01
952109
A few years ago hydraulic fluid power component manufacturers had the luxury of long lead times to develop new products. In today's competitive global market, pump and valve design engineers must be able to shorten development lead times and get new, less costly products to production in order to satisfy customer demands. This paper describes how one fluid power component manufacturer uses rapid prototyping technology to speed up the development cycle by making: fit and form models, design evaluation test samples, and tooling for prototype castings.
Technical Paper

Hysteresis Effects on Driveline Torsional Vibrations

1995-05-01
951293
A major challenge in predicting driveline torsionals is the modeling of major energy dissipation mechanisms in the driveline. Primary candidates for such mechanisms are viscous dampers and dry friction (hysteresis) dampers which are specifically included by the designers to disperse the energy of torsional vibrations. The inherent structural and other internal damping in the components of the driveline is small as compared to those of viscous and dry friction dampers. Past attempts to model clutch hysteresis have repeatedly resorted to the classical approach of modeling that has been reported many years ago. However, such an approach is oversimplified and assumes, for instance, that the hysteretic effects are independent of the frequency. In addition, the motion of the damper is assumed to be purely harmonic. Also, such studies rely solely upon the static hysteresis characterization of the elements, particularly within the clutch.
Technical Paper

Corrosion Fatigue Influence on Gasket Flange Cracking

1993-10-01
932352
This paper discusses corrosion fatigue and the corrosive environment as they relate to an industrial engine head gasket joint. The paper will identify possible corrosive elements which initiate corrosion fatigue failures. The sources of the corrosive elements will be cited with the associated concentration levels. The paper will formulate a hypothesis as to how the corrosive elements are transferred through the engine coolant system. Utilizing a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscope (EDX), an analysis of coolant residue at the fracture will show evidence of the corrosive elements to verify the proposed hypothesis. Information from engines in the field will be compared to laboratory engine tests to show how laboratory and field results are significantly different. The main corrosive failure of the engine head gasket is flange cracking.
Technical Paper

Quality and Productivity: An Answer to the Question

1992-02-01
920797
Who will repair the cars of the future? By the year 2001 there will be over 200 million vehicles registered in the United States. The closing of many new car dealerships and the reduction of service bays at oil companies are contributing to the decline of traditional service outlets to repair vehicles. Certain trends, however, are emerging that indicate that a shortage of auto repair technicians will not exist. Vehicles have been improved and maintenance schedules and warranties have been extended. The quality of the modern vehicle has impacted some traditional types of auto repair that used to be done. Rustproofing and engine tune-ups are just two such businesses. Factory rustproofing and the use of rust resistant materials have forced muffler shops and rustproofing businesses to change their repair focus. Tune-up services have changed to engine performance services because of the change in vehicle technology.
Technical Paper

Determining Magnitudes of Axle Gear Noise

1963-01-01
630166
A simple and basic laboratory test is described which may be used to evaluate and compare axle noises in a passenger car. In this method, a number is assigned to the magnitude of a given noise at any given frequency through a complete range of speed and load conditions during typical vehicle operation. A chassis dynamometer is used to simulate road conditions, and various pickup and recording instrumentation are employed to record the objectionable noises under different operating conditions and speeds.
Technical Paper

Torsionally Resilient Drive Lines

1960-01-01
600019
THE INCREASED use of midship-mounted transmissions in large equipment has emphasized the need for a torsionally resilient connection from the engine to reduce vibration transfer. To increase the torsional flexibility needed in these systems, the spring rate of the system must be reduced by such constructions as a flexible coupling, a spring-loaded damper, or a rubber torsional spring. This paper discusses these systems, emphasizing rubber springs. Some advantages of such a drive are: it provides an amplitude limitation with impact loads and a cushion to reduce noise and prevent clattering and contacts noises on parts with backlash, it smooths out transition periods to reduce loads on bearings and gears, its clamping characteristics can be adjusted by various rubbers, and its rubber cushion provides a degree axial flexibility.*
Technical Paper

REAR AXLES Today Tomorrow

1958-01-01
580038
ON THE basis of laboratory and field tests of passenger-car and light-truck rear axles, the authors conclude: 1. The capacity of present axles can be increased, without increasing axle size, when greater load-carrying antiwear and antiscore lubricants are available. 2. Gear noise will always be a major problem because axle gears are operating at varying speeds and loads whenever a car is in motion. Many gear noise problems can be overcome by proper tooth development and by testing in the actual car model under which the axle will be used. 3. The only reliable basis for torque-capacity rating is the tractive effort (wheel-slip torque). 4. The limited-slip type of differential will eventually become standard equipment on all passenger cars, if only to improve car handling and stability during high-speed driving under varying traction conditions.
X