Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-04-16
2007-01-0981
Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

Mechanical Properties of Gear Steels and Other Perspective Light Weight Materials for Gear Applications

2006-10-31
2006-01-3578
To improve fuel economy and possibly reduce product cost, light weight and high power density has been a development goal for commercial vehicle axle components. Light weight materials, such as aluminum alloys and polymer materials, as well as polymer matrix composite materials have been applied in various automotive components. However it is still a huge challenge to apply light weight materials in components which are subject to heavy load and thus have high stresses, such as gears for commercial vehicle axles or transmissions. To understand and illustrate this challenge, in this paper we will report and review the current state of art of carburized gear steels properties and performance.
Technical Paper

Virtual Development of High-Tonnage Hydroform Press

2006-04-03
2006-01-1656
This paper discusses the virtual development process used to support design of a high-tonnage hydroform press. It also discusses the optimized design for structural integrity while achieving low target cost. Other considerations included optimization of setup issues such as press fabrication and assembly. Due to tightly constrained development time, a diverse range of CAE methodologies were used to refine and validate the design. Detailed linear and nonlinear finite element models were developed to provide the required accuracy in the critical regions of the press structure. From these detailed models simplified analytical tools were developed to calculate the key press parameters such as alternating stress and predicted fatigue life. Finite element models were validated with physical strain gage measurements from an array of strain gages installed on the production presses.
Technical Paper

A Study of the Effect of Multiple Braze Furnace Exposures on 304L Stainless Steel Copper-Brazed Assemblies

2004-03-08
2004-01-1236
The effect of multiple braze furnace exposures has been questioned by many because the rework of brazed parts is a common practice in manufacturing. However, there are process controls that limit the number of exposures for an assembly due to known issues with multiple exposures. A common concern deals with the effect of multiple braze furnace exposures on the structural integrity of the base material of the components. Another concern regards the effect of multiple exposures on the structural integrity of the braze joint itself. This paper details experimental results of a physical study to investigate these questions. The material forms used are seam-welded tube and a thin-wall stamped component, both made from 304L stainless steel. The copper paste used in the study has an industry designation of ANSI/AWS A5.8 - BCu-1a.
Technical Paper

Bending Fatigue Life Analysis of Carburized Components Using Strain Life and Fracture Mechanics Approaches

2003-03-03
2003-01-1307
Axle primary gearing is normally carburized for high and balanced resistance to contact fatigue, wear, bending fatigue, and impact loading. The focus of this work is on bending fatigue which is a key design consideration of automotive and commercial vehicle axle gearing. Since a carburized component is basically a composite material with steep gradients in carbon content, hardness, tensile strength and microstructure from surface to the middle of the cross section combined with non-linear residual stress, its bending fatigue life prediction is a complex and challenging task. Many factors affect the bending fatigue performance of axle gearing, such as gear design, gear manufacturing, loading history during service, residual stress distribution, steel grade, and heat treatment. In this paper, the general methodology for bending fatigue life prediction of a carburized component is investigated. Carburized steel composites are treated as two homogeneous materials: case and core.
X