Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Journal Article

Solder Void Modeling and Its Influence on Thermal Characteristics of MOSFETs in Automotive Electronics Module

2017-03-28
2017-01-0011
Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Diffusion Combustion Phenomena in GDi Engines caused by Injection Process

2013-04-08
2013-01-0261
Particulate matter emissions are no longer only a concern in the development of Diesel engine powertrains. In addition to particulate mass requirements, the new European legislation for Euro 6 includes a proposed particulate number requirement for all vehicles with gasoline direct injection engines. Euro 6b will establish the first requirement in 2014 which will then be significantly reduced with the implementation of Euro 6c in 2017. This might coincide with the introduction of the World Light Duty Testing Procedure vehicle drive cycle test, raising the bar even higher to reach compliance to the particulate number legislative requirements. Several different investigations revealed that the particulate number emission will become very challenging while the limit for particulate mass can already be met with today's applications.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

Engine Efficiency Improvements Enabled by Ethanol Fuel Blends in a GDi VVA Flex Fuel Engine

2011-04-12
2011-01-0900
Advances in engine technology including Gasoline Direct injection (GDi), Dual Independent Cam Phasing (DICP), advanced valvetrain and boosting have allowed the simultaneous reductions of fuel consumption and emissions with increased engine power density. The utilization of fuels containing ethanol provides additional improvements in power density and potential for lower emissions due to the high octane rating and evaporative cooling of ethanol in the fuel. In this paper results are presented from a flexible fuel engine capable of operating with blends from E0-E85. The increased geometric compression ratio, (from 9.2 to 11.85) can be reduced to a lower effective compression ratio using advanced valvetrain operating on an Early Intake Valve Closing (EIVC) or Late Intake Valve Closing (LIVC) strategy. DICP with a high authority intake phaser is used to enable compression ratio management.
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
Journal Article

Sensor- Less Individual Cylinder Pressure Estimation and Closed Loop Control for Cold Start and Torque Balancing

2010-04-12
2010-01-1269
The current paper presents a by cylinder IMEP estimator which operates completely free of direct cylinder pressure sensor measurement and which, when coupled with associated closed loop torque controller and commonly used engine control hardware, can provide significant improvement in the reduction to fuel sensitivity over conventional systems at minimal or no cost. Applications of the by cylinder estimator and closed loop torque/IMEP control are described including the use of the estimator during cold start before the O2 sensor is active. The application of the IMEP estimator and controller to cold start can provide significantly improved idle quality as well as enhanced robustness to degraded fuel quality. Closed loop combustion strategies using spark and fuel are described and experimental data from V6 engine testing are presented for the estimator and available closed loop controllers.
Technical Paper

Development of Injector for the Direct Injection Homogeneous Market using Design for Six Sigma

2010-04-12
2010-01-0594
Gasoline direct injection (GDi) engines have become popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet increasingly stringent environmental standards. These engines require high-pressure fuel injection in order to improve the fuel atomization process and accelerate mixture preparation. The injector is a critical part of this system. The injector technology needed to satisfy the market demands is constantly changing. This paper focuses on how the Design for Six Sigma innovation methodology was successfully used to develop a new injector for the homogeneous direct injection market. The project begins with the work to understand the market needs and market drivers then decomposes those needs into functional requirements and concepts. The concepts are evaluated and the best concept is selected. The project ends with the optimization of the critical functions including fuel flow control and fuel spray control.
Technical Paper

Monitoring, Feedback and Control of Urea SCR Dosing Systems for NOx Reduction: Utilizing an Embedded Model and Ammonia Sensing

2008-04-14
2008-01-1325
This paper presents a monitoring, feedback and control system for SCR urea dosing utilizing an embedded model and NH3 sensing after the SCR for loop closing control. A one-dimensional SCR model was developed and embedded in a Simulink/Matlab environment. This embedded model is utilized for on-line, real time control of 32.5% aqueous urea dosing in the exhaust stream. Engine testing and simulation are used with the embedded SCR model and NH3 sensor closed loop feedback to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. The paper explores these advantages under heavy duty FTP cycle conditions. The potential benefits include SCR size optimization and fuel consumption rate reduction under certain operating conditions.
Technical Paper

Development of Premixed Low-Temperature Diesel Combustion in a HSDI Diesel Engine

2008-04-14
2008-01-0639
The pursuit of new combustion concepts or modes is ongoing to meet future emissions regulations and to eliminate or at least to minimize the burden of aftertreatment systems. In this research, Premixed Low Temperature Diesel Combustion (PLTDC) was developed using a single-cylinder engine to achieve low NOx and soot emissions while maintaining fuel efficiency. Operating conditions considered were 1500 rpm, 3 bar and 6 bar IMEP. The effects of injection timing, injection pressure, swirl ratio, EGR rate, and multiple injection strategies on the combustion process have been investigated. The results show that low NOx and soot emissions can be obtained at both operating conditions without sacrificing the fuel efficiency. Low NOx and soot emissions are achieved through minimization of peak temperatures during the combustion process and homogenization of in-cylinder air-fuel mixture.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
X