Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Unitary HPAC System - Commercial Vehicle Applications

2012-09-24
2012-01-2025
The thermal systems of commercial vehicles are changing to reduce operational costs and tailpipe CO₂ emissions and to address anti-idling legislation. As these systems transition they must recognize that waste heat from the internal combustion engine can longer be the only means of providing hot coolant for heating. The Unitary HPAC (Heat Pump Air Conditioner) provides the hot coolant needed for heating in addition to cold coolant that can be used for cooling. The Unitary HPAC is a refrigerant system that is coupled with a coolant system. It produces hot and cold coolant that is used to manage the vehicles thermal needs. It has the ability to scavenge heat from unused sources, which allows it to provide heating with COP's (Coefficient of Performance) greater than 1. The Unitary HPAC can be applied to any vehicle that does not have enough hot coolant available for heating purposes.
Journal Article

Unitary HPAC System

2012-04-16
2012-01-1050
The Unitary HPAC (Heat Pump Air Conditioner) System has been developed to enable a heat pump system in passenger vehicles. Unitary HPAC uses technology of reversing the coolant instead of refrigerant to distribute heat from where it is generated to where it is needed. Integrating this system in a plug-in hybrid vehicle reduces the energy required by the heating and air conditioning system, reducing the grams of CO₂ per mile by up to 25%. Although this system can be applied to any passenger vehicle, it is most beneficial to hybrid and electric vehicles, because it provides an additional source of hot coolant. These vehicles provide less waste heat than conventional internal combustion engine vehicles so they must rely on electric heaters to provide the heat needed for comfort. The electric heaters are an energy draw that reduces the electric drive range. The Unitary HPAC system will extend the electric range significantly.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
Technical Paper

Design and CFD Simulation of a Battery Module for a Hybrid Electric Vehicle Battery Pack

2009-04-20
2009-01-1386
Computational Fluid Dynamic (CFD) analysis was performed using FLUENT to analyze the fluid thermal performance of a Battery cell container for the Ford Fusion Hybrid Electric Vehicle. The objective of the design was to maintain the cells in their desired operating temperature range with a near uniform temperature among the battery cells in the container, while minimizing energy losses associated with the pressure drop. Groupings of multiple such containers were assembled for bench test confirmation. Excellent agreement was obtained for air side pressure drop between the CFD and hardware physical properties. Multiple design iterations were made to improve the baseline design. Ultimately, the thermal gradient within the physical property was reduced to 1.8°C with a minimal increase in system pressure drop.
Journal Article

CFD Design Tool Improves HVAC Design and Cuts Product Development Cycle Time

2008-04-14
2008-01-0238
In an effort to shorten and improve the efficiency of the product design process (PDP), Delphi has developed an application specific CFD design tool that helps design engineers optimize designs prior to prototyping. This new tool enables design engineers to set up an HVAC module, powertrain cooling system, or heat exchanger model for CFD analysis in relatively short time. The ability to evaluate and improve the design of the product at the very early stages of the development cycle greatly reduces the need for design changes late in the process, which are expensive and time-consuming. Besides reducing the design cycle, the new CFD tool has also reduced the model shop and testing expenses for each development project with fewer prototypes. In this paper, a case study for using this tool during the HVAC module development process in early stage is demonstrated.
Technical Paper

Heating Aspects of Augmented Heated and Cooled Seats

2008-04-14
2008-01-0831
Heating and cooling of automotive seats is a relatively new technology that delivers conditioned air to the occupant's seat providing an overall improvement in passenger comfort. This paper combines experimental and computational data to describe the effect of seat heating on passenger comfort. Included are: (1) a review of current seat heating technologies, (2) the introduction of an innovative seat heating technology using the vehicle's HVAC system, (3) the inclusion of thermal comfort seat strategy for improving overall comfort, and (4) validation of the thermal comfort seat strategy with experimental data. The paper focuses on the occupant's overall comfort in heating mode under different ambient conditions.
Technical Paper

Cooling with Augmented Heated and Cooled Seats

2007-04-16
2007-01-1193
Heating and cooling automotive seats are a relatively new technology that delivers conditioned air to the occupant's seat providing an overall improvement in occupant comfort. This paper combines experimental and computational data to describe the effect of seat cooling on occupant comfort. Included are (1) a review of current seat cooling technologies, (2) the introduction of an innovative seat cooling technology using the vehicle's HVAC system, (3) the inclusion of thermal comfort seat strategy for improving overall comfort, and (4) validation of the thermal comfort seat strategy with experimental data. The paper focuses on the occupant's overall comfort in cooling mode under different ambient conditions.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

Flow Induced Noise Emanating from Evaporator Tube Plates

2007-04-16
2007-01-1522
This work examines, objectively and subjectively, refrigerant noise induced by the flow of R134a through seven different plate-type automotive evaporator tubes with two tube heights and airflow depths ranging from about 45 mm to 75 mm. Experiments were conducted with both superheated and two-phase refrigerant without and with heating, and without/with lubricant. Measurements of tube surface acceleration were used to quantify flow induced acoustic phenomena. Flow velocity is found to be the critical variable influencing the surface acceleration. Only three types of evaporator tubes consistently whistle above certain threshold velocities. Two other types of tubes produce sporadic, inconsistent whistling, while the remaining two types of tubes never whistle. Half tubes have little influence on acoustic resonance.Adiabatic two-phase flows through a tube never produce resonance.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
X