Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Comparison of Spark and Jet Ignition Engine Operation with Ammonia/Hydrogen Co-Fuelling

2024-04-09
2024-01-2099
Ammonia (NH3) is emerging as a potential fuel for longer range decarbonised heavy transport, predominantly due to favourable characteristics as an effective hydrogen carrier. This is despite generally unfavourable combustion and toxicity attributes, restricting end use to applications where robust health and safety protocols can always be upheld. In the currently reported work, a spark ignited thermodynamic single cylinder research engine was upgraded to include gaseous ammonia and hydrogen port injection fueling, with the aim of understanding maximum viable ammonia substitution ratios across the speed-load operating map. The work was conducted under stoichiometric conditions with the spark timing re-optimised for maximum brake torque at all stable logged sites. The experiments included industry standard measurements of combustion, performance and engine-out emissions.
Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

Investigations of Diesel Injector Deposits Characterization and Testing

2020-09-15
2020-01-2094
Over the last decade, there has been an impetus in the automobile industry to develop new diesel injector systems, driven by a desire to reduce fuel consumption and proscribed by the requirement to fulfil legislation emissions. The modern common-rail diesel injector system has been developed by the industry to fulfil these aspirations, designed with ever-higher tolerances and pressures, which have led to concomitant increases in fuel temperatures after compression with reports of fuel temperatures of ~150°C at 1500-2500 bar. This engineering solution in combination with the introduction of Ultra Low Sulphur diesel fuel (ULSD) has been found to be highly sensitive to deposit formation both external injector deposits (EDID) and internal (IDID). The deposits have caused concerns for customers with poor spray patterns misfiring injector malfunction and failure, producing increased fuel consumption and emissions.
Journal Article

ERRATA

2020-09-15
2020-01-2098.1
Journal Article

Internal Diesel Injector Deposit Chemical Speciation and Quantification Using 3D OrbiSIMS and XPS Depth Profiling

2020-09-15
2020-01-2098
The impact of internal diesel injector deposits (IDIDs) on engine performance, efficiency and emissions remains a major concern in the automotive industry. This has been compounded in recent years by fuel injection equipment developments and changes to diesel fuel towards ultra-low sulfur diesel (ULSD) and biodiesel as well as the introduction of new fuels such as hydrotreated vegetable oil (HVO). Prevention and mitigation of such deposit formation requires an understanding of the formation process, which demands a chemical explanation. The chemistry of these deposits therefore remains a key research interest to the industry using the latest analytical methodologies to inform and build further on previous investigations.
Technical Paper

Brake Power Availability Led Optimisation of P0 versus P2 48V Hybrid Powertrain Architectures

2020-04-14
2020-01-0439
Through improving the 48V hybrid vehicle archetype, governmental emission targets could be more easily met without incurring the high costs associated with increasing levels of electrification. The braking energy recovery function of hybrid vehicles is recognised as an effective solution to reduce emissions and fuel consumption in the short to medium term. The aim of this study was to evaluate methods to maximise the braking energy recovery capability of the 48V hybrid electric vehicle over pre-selected drive cycles using appropriately sized electrified components. The strategy adopted was based upon optimising the battery chemistry type via specific power capability, so that overall brake power is equal to the maximum battery charging power in a typical medium-sized passenger car under typical driving. This will maximise the regenerative braking energy whilst providing a larger torque assistance for a lower battery capacity.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?

2019-04-02
2019-01-0301
Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbocharged gasoline direct injection (GDI) engine have been analysed. The samples were collected from the oil sump after periods of use in predominantly urban driving conditions with start-stop mode activated. Thermogravimetric analysis (TGA) was performed to measure the soot content in the drained oils. Soot deposition rates were similar to previously reported rates for diesel engines, i.e. 1 wt% per 15,000 km, thus indicating a similar importance. Morphology was assessed by transmission electron microscopy (TEM). Images showed fractal agglomerates comprising multiple primary particles with characteristic core-shell nanostructure. Furthermore, large amorphous structures were observed. Primary particle sizes ranged from 12 to 55 nm, with a mean diameter of 30 nm and mode at 31 nm.
Technical Paper

Assessing the Accuracy of Soot Nanoparticle Morphology Measurements Using Three-Dimensional Electron Tomography

2019-04-02
2019-01-1188
Morphology plays an important role in determining behaviour and impact of soot nanoparticles, including effect on human health, atmospheric optical properties, contribution to engine wear, and role in marine ecology. However, its nanoscopic size has limited the ability to directly measure useful morphological parameters such as surface area and effective volume. Recently, 3D morphology characterization of soot nanoparticles via electron tomography has been the subject of several introductory studies. So-called ‘3D-TEM’ has been posited as an improvement over traditional 2D-TEM characterization due to the elimination of the error-inducing information gap that exists between 3-dimensional soot structures and 2-dimensional TEM projections. Little follow-up work has been performed due to difficulties with developing methodologies into robust high-throughput techniques.
Technical Paper

Dynamic Stiffness Investigation of an Automotive Body-in-White by Utilizing Response Surface Methodology

2018-06-13
2018-01-1479
Noise, vibration, and harshness (NVH) attribute is needed to be included in the vehicle structure design since improving the NVH characteristics enhances the ride quality experienced by the occupants. In this regard, an efficient method was proposed to investigate the structural dynamic response of an automotive body considering low-frequency NVH performances. Moreover, the improvement of an automotive structure under the constraint of NVH behavior was investigated by using the design of experiments (DOEs) method. The DOEs methodology was for screening of the design space and generating approximation models. Here, the thicknesses of panels consisting of a body-in-white (BIW) of an automotive were employed as design variables for optimization, whose objective was to increase the first torsional and bending natural frequencies. Central composite design (CCD) for DOEs sampling and response surface methodology (RSM) were employed to optimize the dynamic stiffness.
Technical Paper

Morphological Characterisation of Diesel Soot in Oil and the Associated Extraction Dependence

2018-04-03
2018-01-0935
The size and morphology of soot particles and agglomerates extracted from lubricating oil drawn from the sump of a diesel engine have been investigated and compared using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Samples were prepared for electron microscopy imaging by both centrifugation and solvent extraction to investigate the impact of these procedures on the morphological characteristics, such as skeleton length and width and circularity, of the obtained soot. It was shown that centrifugation increases the extent of agglomeration within the sample, with 15% of the agglomerates above 200 nm compared to only 11% in the solvent extracted soot. It was also observed that the width of centrifugation extracted soot was typically 10 nm to 20 nm larger than that of solvent extracted soot, suggesting that centrifugation forces the individual agglomerate chains together.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Technical Paper

Evaluating Performance of Uncoated GPF in Real World Driving Using Experimental Results and CFD modelling

2017-09-04
2017-24-0128
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Cyclically Resolved Flame and Flow Imaging in an SI Engine Operating with Future Ethanol Fuels

2017-03-28
2017-01-0655
This work was concerned with study of the in-cylinder flow field and flame development in a spark ignition research engine equipped with Bowditch piston optical access. High-speed natural light (chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamentals of flame propagation for a variety of ethanol fuels blended with either gasoline or iso-octane. PIV was undertaken on the same engine in a motoring operation at a horizontal imaging plane close to TDC (10 mm below the fire face) throughout the compression stroke (30°,40°,90° and 180°bTDC) for a low load engine operating condition at 1500rpm/0.5 bar inlet plenum pressure. Up to 1500 cycles were considered to determine the ensemble average flow-field and turbulent kinetic energy. Finally, comparisons were made between the flame and flow experiments to understand the apparent interactions.
Journal Article

Solder Void Modeling and Its Influence on Thermal Characteristics of MOSFETs in Automotive Electronics Module

2017-03-28
2017-01-0011
Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
Technical Paper

Natural-Gas Direct-Injection for Spark-Ignition Engines - A Review on Late-Injection Studies

2017-01-10
2017-26-0067
Significant research has been made on traditional pre-mixed charge Spark-Ignition Natural-Gas engines which have seen widespread usage across the automotive sector. Many researchers including those in industry are now exploring the Direct-Injection concept for Natural-Gas Spark-Ignition engines. Direct-Injection has significant performance benefits over port-fuel injection, primarily due to increased volumetric efficiency as a result of injecting the fuel after intake valve closure. This could lead to enhanced driving performance over port-fuel injection comparable to gasoline engines. Furthermore, Direct-Injection with increased compression ratio in conjunction with downsizing concepts has the potential to increase thermal efficiency while exhibiting significantly lower CO2 emissions. Advanced combustion strategies like stratified mixture combustion has been widely studied for gasoline and proven to increase the low load thermal efficiency over homogeneous stoichiometric combustion.
X