Refine Your Search

Topic

Author

Search Results

Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Technical Paper

Spray Pattern Recognition for Multi-Hole Gasoline Direct Injectors Using CFD Modeling

2009-04-20
2009-01-1488
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

E-85 Fuel Corrosivity: Effects on Port Fuel Injector Durability Performance

2007-10-29
2007-01-4072
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

The Effectiveness of Oxygen in Preventing Embrittlement in Air Bag Inflators Containing Gaseous Hydrogen

2006-04-03
2006-01-1188
This study examines the effectiveness of gaseous oxygen at preventing embrittlement in steel associated with exposure to gaseous hydrogen under static loading conditions. Notched C-ring samples machined from 4340 steel and heat treated to HRC 51-53 were used to test the neutrality of an oxygen-hydrogen gas mixture similar to that which may be used as a generant in an air bag inflator. The 29 percent oxygen to hydrogen gas ratio of the gas mixture was found to be sufficient to protect the steel from hydrogen embrittlement under static loading conditions. This would indicate that any steel with a hardness of HRC 51 or lower would be safe to use in gas-based air bag inflators containing a oxygen to hydrogen gas ratio of 29 percent or higher.
Technical Paper

Controller Integrity in Automotive Failsafe System Architectures

2006-04-03
2006-01-0840
Embedded controllers and digital signal processors are increasingly being used in automotive safety critical control systems. Controller integrity is a significant concern in these systems. Over the past decade, several techniques have been published about controller safety and integrity verification. These techniques include: single processor with watchdog, dual processors, dual core processor, and asymmetric processor (intelligent watchdog). Each of these techniques have benefits, however, many new non-distributed safety-critical systems are applying the asymmetric processor technique to help verify controller integrity. This paper discusses an overview of five controller integrity techniques, and then provides a detailed discussion of an asymmetric processor approach. This paper presents two different options within the asymmetric processor approach.
Technical Paper

Development of a Robust Injector Design for Superior Deposit Resistance

2005-10-24
2005-01-3841
A comprehensive investigation into why gasoline fuel injectors fail in the field due to deposit formation has led to the development of a robust fuel injector design. Analysis of field failures provided critical clues as to why fuel injectors form deposits. The development of a repeatable test and a repeatable deposit forming fuel allowed the confirmation of these clues and the testing of design improvements. This combination of test cycle and fuel allowed for a reduced test time while providing sufficient sensitivity to differentiate between injector design improvements. Confirmation of design improvements was completed on a stationary vehicle using both commercially available gasoline and a formulated deposit forming fuel.
Technical Paper

Experimental Evaluation of R134a Emission with Various Hose Constructions

2005-05-10
2005-01-2032
The focus of this paper is to understand, from experimental data, the R134a refrigerant emission rates of various hose materials due to permeation. This paper focuses on four main points for hose assembly emission of R134a: (1) characteristics of hose permeation in response to the effect of oil in R134a and the characteristics of hose permeation of vapor vs. liquid refrigerant; (2) conditioning of the hose material over time to reach steady state R134a emission; (3) the relative contribution of hose permeation and coupling emission to the overall hose assembly refrigerant emission; (4) transient emission rates due to transient temperature and pressure conditions. Studies include hoses with different materials and constructions resulting in various levels of R134a permeation.
Technical Paper

Physical and Virtual Prototyping of Magnesium Instrument Panel Structures

2005-04-11
2005-01-0726
This paper reviews the current strategies for physical prototyping of Magnesium instrument panel (I/P) structures. Bottlenecks in the traditional physical prototype based product development process are discussed. As demand for fast-to-market and cost-reduction mounts, virtual prototyping becomes increasingly important in meeting the timing and performance goals. A virtual prototyping methodology is presented in this paper to enable high performance Magnesium I/P structures in Safety, NVH, and initial part quality aspects. Examples of Finite Element Analysis (FEA) results and correlations are included.
Technical Paper

Development Of A Slush Molded TPO Instrument Panel Skin

2005-04-11
2005-01-1224
Slush molding is a unique processing operation that was developed originally for polyvinyl chloride (PVC) based materials. It has been utilized to produce a variety of automotive interior products, including instrument panel skins, where relatively intricate designs are required. PVC becomes brittle upon aging, while thermoplastic polyolefin (TPO) doesn’t lose its ductility upon aging. TPOs have made significant inroads into interior applications in the form of thermoformed extruded sheet. However, when multiple grains, geometric (technical) grains, deep profile lettering, and logos are needed, slush molding is the preferred process. Currently, there is an increased demand for non-PVC slush moldable materials, such as TPO, that can meet these demanding aggressive styling requirements. The semi-crystalline nature of TPO compositions renders them more difficult to process than PVC in slush molding.
Technical Paper

Overview of Remote Diagnosis and Maintenance for Automotive Systems

2005-04-11
2005-01-1428
Advances in wireless communications, model-based diagnostics, human-machine interfaces, electronics and embedded system technologies have created the foundation for a dramatic shift in the way the vehicles are diagnosed and maintained. These advances will enable vehicle diagnosis and maintenance to be performed remotely while the vehicle is being driven. There also has been recent strong consumer interest in Remote Diagnosis and Maintenance (RD&M). As a consequence, RD&M is drawing increased attention in the automotive industry. This paper provides the current status of vehicle remote diagnosis and maintenance, analyses the potential features of RD&M and their significance, and discusses how next generation automotive products could benefit from research and development in this area.
X