Refine Your Search

Topic

Search Results

Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Analysis of Spray Feature Injected by Tailpipe Injector for Aftertreatment of Diesel Engine Emissions

2017-10-08
2017-01-2373
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. It is also necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature is grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
Technical Paper

Natural Frequency Analysis of Tire Vibration Using a Thin Cylindrical Shell Model

2015-06-15
2015-01-2198
Early studies on the tire vibration characteristics of road noise focused on radial modes of vibration because these modes are dominant in vertical spindle force. However, recent studies of Noise, Vibration and Harshness (NVH) prediction have suggested that tire modeling not only of radial modes, but also of lateral vibration, including lateral translational and lateral bending modes, affect interior noise. Thus, it is important to construct tire dynamic models with few degrees of freedom for whole-vehicle analysis of NVH performance. Existing tire dynamics model can't express tire lateral vibrations. This paper presents a new approach for tire vibration analysis below 200Hz, and a formula for tire natural frequencies. First, a tire dynamic model is developed based on the thin cylindrical shell theory. Kinetic and potential energies are derived. Mode shape function is also derived by the assumption of inextensility in the neutral of the tread ring.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Vibration Behavior Analysis of Tire Bending Mode Exciting Lateral Axial Forces

2013-05-13
2013-01-1911
The demand to reduce noise in the passenger cars is increasing. Tire vibration characteristics must be considered when studying road noise because of the strong interaction between tire vibration characteristics and interior car noise. Car manufacturers are keenly interested in studies on the prediction of NVH (Noise, Vibration and Harshness) performance, including viewing tires as substructure. Recently, studies have illustrated the effect that tire lateral bending mode have has on road noise, while most past studies of tire vibration focused on the circumference mode, which excited the vertical spindle force. Therefore, further study of tire lateral bending mode is necessary. Modeling of the tire lateral bending mode is described in this paper. First, lateral spindle force is measured under tire rolling conditions. Second, experimental modal analysis is performed to grasp tire lateral bending mode. Finally, a tire vibration model is built using the cylindrical shell theory.
Technical Paper

Identification of Tire Equivalent Stiffness for Prediction of Vertical Spindle Forces

2011-10-06
2011-28-0093
The research into vibration characteristics of a loaded and rolling tire is essential for the prediction of spindle forces. There are tire vibration characteristics one of which is the first natural frequency of a loaded and rolling tire is lower than that of an unrolling tire. The vibration characteristics, for a loaded and rolling tire, are affected by the effect of rotation, restrictions of the vibration due to road contact, and the behavior of rubber dependent on amplitude strain. The consideration of the degradation of natural frequency is therefore necessary in the tire model for prediction of spindle forces. This paper describes an identification method for the tire equivalent stiffness of a tire model focused on vertical spindle forces. The first mode is dominant in vertical spindle forces. First, the natural frequencies in rolling and unrolling tires are identified by operational impact test.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Fundamental Study of Single Droplet and Droplets Array Combustion with Premixed Gas

2002-03-04
2002-01-0648
In the actual spray combustion fields, coupled combustion process should be occurred, between the pre-evaporate fuel component and remaining liquid droplets. Therefore it is insufficient to clarify the fundamental spray combustion mechanism with use of only droplet or only premixed mixture analyze method. In this study, the premixed mixture - droplets coupled combustion field was focused as a model of the actual spray combustion field. In the experiments, the effect of the flame pattern and the combustion rate constant by the interference between the droplets were clarified with the variation of fuels used by droplets. Besides, the effect of the premixed gas surrounding the droplets was clarified by the experiment on coupled combustion. The experiments were carried out under the normal gravity field and the micro gravity field to estimate the effect of convection in combustion field
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
Technical Paper

Modeling and Measurement on Evaporation Process of Multicomponent Fuels

2000-03-06
2000-01-0280
In previous multi-dimensional modeling on spray dynamics and vapor formation, single component fuel with pure substance has been analyzed to assess the mixture formation. Then it should be expected that the evaporation process could be performed for the multicomponent fuel such as actual Gasoline and Diesel gas oil. In this study, vapor-liquid equilibrium prediction was conducted for multicomponent fuels such as 3 and 10 components mixed solution with ideal solution analysis and non-ideal solution analysis. And the computation of distillation characteristics was conducted for the steady state fuel condition fuel condition to understand the evaporation process. As a result, calculated distillation characteristics are consistent well with experiment results. And the evaporation process of a multicomponent droplet in the combustion chamber has been calculated with the variation of ambient pressure and temperature.
Technical Paper

Effects of Temperature and Crack Tip Opening Rate on Fracture Behavior of CNBR Modified Epoxy Adhesives Under Mode I Loading

1997-02-24
970661
The effects of temperature, crack tip opening rate and rubber content on static fracture characteristics of CNBR (Cross-linked acryloNitrile Butadiene Rubber) modified epoxy adhesives were investigated under mode I loading. Loading-unloading tests were statically performed by using DCB (Double Cantilever Beam) specimens. The fracture toughness increased with increasing the rubber content. The fracture toughness of CNBR modified and unmodified epoxy adhesives was much influenced by temperature and crack tip opening rate. The surface topology of fractured surface was changed by temperature and type of adhesive.
Technical Paper

Organized Structure and Motion in Diesel Spray

1997-02-24
970641
This paper deals with the particle distribution in Diesel spray under the non-evaporating condition from the analytical aspect based on our experimental results. In the analysis, TAB method of KIVA II code and the k-ε turbulent model were used, and the mono-disperse distribution of the initial parcel's diameter, whose size equals to the nozzle hole diameter, was utilized in conjunction with the breakup model. The size distribution of atomized droplets (i.e. the χ-squared distribution function) is justified with the degree of freedom. It is shown that the ambient gas, which is initially quiescent, is induced and led to a turbulent gas jet. The turbulent gas jet which has a equivalent momentum with the Diesel spray was also examined by Discrete Vortex method. The quantitative jet growth was shown to be possible for the estimation and determination in its initial boundary values at the nozzle.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Modeling Spray Impingement Considering Fuel Film Formation on the Wall

1997-02-24
970047
In this study, a new submodel concerning fuel film formation process is proposed in order to simulate the behavior of diesel spray impingement on relatively low temperature wall surface. Here, super - heating degree of the surface, defined by the temperature difference between the wall surface and the fuel saturated temperature, is newly considered for the behavior of impinged liquid droplets. In this spray impingement submodel, fuel film formation process, droplet interaction, film breakup process, and velocity and direction of dispersing droplets were considered based on several experimental results. This new submodel was incorporated into KIVA-II code, and the results were compared with experimental data KIVA-II original code and the spray / wall impingement model proposed by Naber & Reitz. As a result, it is found that the calculated results of impinging spray behavior by the new model agree well with experimental results.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
Technical Paper

Fatigue Fracture Characteristics of Toughened Epoxy Adhesive Under Mode I Loading - Effects of Glass Beads and CNBR Rubber Modification

1996-02-01
960576
The effects of inclusion of glass beads and rubber modification on the fatigue fracture characteristics of an epoxy adhesive were investigated. Hybrid effects were also investigated when not only the epoxy adhesive was rubber modified but also when glass beads were mixed simultaneously. Fatigue crack growth resistance was greatly increased due to glass beads, CTBN and CNBR modifications at the second stage of crack growth (da/dN=10-4-10-3 mm/cycle). However, the energy release rate at threshold for both CNBR and CTBN modified adhesives were lower than that for the unmodified adhesive. No significant hybrid effects were distinguishable.
Technical Paper

A Numerical Approach to Analyze the Power Transmitting Mechanisms of a Metal Pushing V-Belt Type CVT

1996-02-01
960720
Some theories on the behaviour of CVT using metal pushing V-belts have been recently drawn. However, our previous experiments did not well prove their prediction. A numerical model which can calculate all block motions of the belt was developed in this paper. Using this model, some steady states of power transmitting of CVT were calculated and compared with the previous experimental results. Satisfactory agreements were obtained between two results in all ratio. This model is effective to estimate the CVT response at steady states.
Technical Paper

Flow Characteristics in Transient Gas Jet

1995-02-01
950847
The combustion of a diesel spray includes very complex processes, that is, atomization, evaporation, diffusion, turbulent mixing and burning. On the other hand, there are no phenomena of atomization and evaporation in the combustion of a transient gas jet. However, the latter jet can be treated as a fundamental of the former spray. From the standpoint mentioned above, acetylene gas was injected into the ambient during short duration as a transient gas jet and its flow characteristics were investigated by means of photography with a sheet of laser light and LDV to detect the turbulent vortex generated in the boundary layer between it and surroundings, in the experiments presented here. And the experimental results show that the jet itself is divided into four peculiar regions and the modelling of each region is carried out by use of the results to understand the mixture formation process owing to the turbulent diffusive mixing.
Technical Paper

A Simple Modeling for Analyzing the Load Distribution of Toothed Belts Under Fluctuating Torque Loading

1995-02-01
950542
It is very important to know the load distribution in pulleys to predict the life of toothed belts. In this study, a simple model consists of springs and friction elements has been developed for numerical analysis of the load distribution. A sample problem with steady pulley motion for a two pulley system was analyzed. The analytical result was compared with the experimental result. It was also compared with the numerical result by the alternative model using FEM. Relatively good agreements between them were obtained. A typical problem for the two pulley system subjected to fluctuating torque loadings was also analyzed by the present model. The calculated result shows a large difference in tooth load distribution between the steady state case and the unsteady state one.
Technical Paper

Effects of CNBR Modification on Mode I Fracture of Epoxy Adhesives for Automotive Application

1995-02-01
950130
The effects of CNBR (cross-linked acrylonitrile butadiene rubber) modification on the fracture characteristics of epoxy adhesives were investigated under Mode I static loading. Fracture tests were conducted by using DCB (double cantilever beam) specimens. Rubber content, adhesive thickness and loading rate were changed. The crack extension resistance (given by energy release rate) of the epoxy adhesives was much improved by CNBR modification. For the rubber modified epoxy adhesives, the crack extension resistance becomes high with an increase in adhesive thickness as well as loading rate. The reason why the CNBR modification improves the crack extension resistance was explained based on the surface observation and fractal dimension of the fractured surface.
X