Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Soot Generation in Spray of Oxygenated Fuel

2006-10-16
2006-01-3371
One of the effective ways to cope with the very severe future regulation of soot exhausted through a CI engine is the use of oxygenated fuel. This paper describes the experimental results of the soot generation of six kinds of oxygenated fuel and n-heptane whose cetane number is the almost the same as that of the gas oil by means of time resolved LII (TIRE-LII) and the classical two color method. The experiments were carried out in a constant volume chamber. The main result is that the oxygen content of the fuel is the much significant factor to decrease in the soot.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Low Emission Diesel Combustion System by Use of Reformulated Fuel with Liquefied CO2 and n-Tridecane

1999-03-01
1999-01-1136
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by use of the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved component is expected to undergo flash boiling or gas separation when being injected into the combustion chamber, and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Further, the internal EGR effect caused by CO2 component injected with the fuel is expected for NO formation. In order to assess this concept, spray dynamics measurement was conducted in the constant volume vessel with a variation of ambient pressure and temperature. Further, combustion experiments were carried out by using a rapid compression and expansion machine. Here, characteristics of the evaporative mixed fuel spray were examined by shadowgraph photography.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
X