Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cockpit Module Approach to Instrument Panels - A System Evolution

1997-02-24
970441
The functional performance of the instrument panel has been changing dramatically since the late 80s, with FMVSS 208 legislation and its related impact on the addition of air bags and knee bolsters. In addition to addressing occupant safety legislation through more safety components, as well as navigation, security, comfort, informational and other systems are being added to the instrument panel as the consumers' desire for enhanced features continues. At the same time, consumers still want a product that is uncomplicated, affordable, aesthetically pleasing and - at the same time - doesn't limit valuable interior compartment space. The early efficient integration of these components (electrical, architecture, HVAC, steering) in the design, engineering and assembly process will be the areas of requirement that will have a primary effect on IP system cost in the future.
Technical Paper

Design Development of Energy Absorbing Ribs for Meeting FMVSS 201 Extended Head Impact

1997-02-24
970161
Revisions to the FMVSS 201 head impact legislation have had a significant impact on the design and engineering of upper interior trim components of cars and light trucks. Structural performance with energy absorbing capability to prevent head injury is now a significant addition to these requirements. However, occupant visibility blockage limits the amount of packaging space available for implementing countermeasures in this area. A novel approach to meeting the FMVSS 201 structural requirements, while keeping the interior trim on the vehicle minimally changed, has been developed. This approach requires the use of energy absorbing rib structures sandwiched between the trim panel and the inner body-in-white (B/W) sheet metal in A and B pillars. Heat staking is used to attach the rib structure to the interior trim panel.
X