Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Engine Braking: A Perspective in Terms of Brake Power

2019-01-09
2019-26-0288
Engine braking is a supplemental retarding technology in addition to foundational friction brakes in commercial vehicles. This technology is in use in Europe & Americas for several decades now. In engine braking, the engine acts as a compressor, thus producing the required braking power. The braking power is generated by either reducing the volumetric efficiency or increasing the pressure difference across the cylinder. This is usually achieved by means of exhaust valve lift modulation. There are dominantly two types of engine brakes viz. bleeder brake and compression release brake. The present work uses GT-Power® model to study the braking performance of a 4-cylinder, medium duty diesel engine at different engine RPMs and valve lifts. The work brings out a comprehensive understanding of different lift events and their effects on braking performance.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

Fatigue Time-to-Failure Prediction Methodology for Glass (Fused Quartz) Material under Cyclic Loading

2016-04-05
2016-01-0388
In amorphous solids such as fused quartz, the failure mechanism under cyclic loading is very different when compared to metals where this failure is attributable to dislocation movement and eventual slip band activity. Standard mechanical fatigue prediction methodologies, S-N or ε-N based, which have been historically developed for metals are rendered inapplicable for this class of material. The fatigue strength of Fused Silica or Fused Quartz (SiO2) material is known to be highly dependent on the stressed area and the surface finish. Stable crack growth in Region II of the V-K curve (Crack growth rate vs Stress intensity factor) is dependent on the competing and transitional effects of temperature and humidity, along that specific section of the stress intensity factor abscissa. Fused glass (under harsh environment conditions) finds usage in Automotive, Marine and Aerospace applications, where stress and load (both static and cyclic) can be severe.
Technical Paper

Final Tier 4 Emission Solution Using An Aftertreatment System With A Fuel Reformer, LNT, DPF And Optional SCR

2011-09-13
2011-01-2197
Diesel exhaust aftertreatment systems are required for meeting Final Tier 4 emission regulations. This paper addresses an aftertreatment system designed to meet the Final Tier 4 emission standards for nonroad vehicle markets. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel vaporizer, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and an optional selective catalytic reduction (SCR) catalyst. Aftertreatment system performance, both with and without the SCR, was characterized in an engine dynamometer test cell, using a 4.5 liter, pre-production diesel engine. The engine out NOx nominally ranged between 1.6 and 2.0 g/kW-hr while all operating modes ranged between 1.2 and 2.8 g/kW-hr. The engine out particulate matter was calibrated to approximately 0.1 g/kW-hr for various power ratings. Three engine power ratings of 104 kW, 85 kW and 78 kW were evaluated.
Journal Article

Aftertreatment System Performance of a Fuel Reformer, LNT and SCR System Meeting EPA 2010 Emissions Standards on a Heavy-Duty Vehicle

2010-10-05
2010-01-1942
Diesel exhaust aftertreatment systems are required for meeting both EPA 2010 and final Tier 4 emission regulations. This paper addresses aftertreatment system performance of a fuel reformer, lean NOx trap (LNT) and selective catalytic reduction (SCR) system designed to meet the EPA 2010 emission standards for an on-highway heavy-duty vehicle. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel reformer, LNT, diesel particulate filter (DPF), and SCR for meeting NOx and particulate emissions. System performance was characterized in an engine dynamometer test cell, using a development, 13L, heavy-duty engine. The catalyst performance was evaluated using degreened catalysts. Test results show that system performance met the EPA 2010 emission standards under a range of test conditions that were reflective of actual vehicle operation.
Journal Article

Performance of a Fuel Reformer, LNT and SCR Aftertreatment System Following 500 LNT Desulfation Events

2009-10-06
2009-01-2835
An advanced exhaust aftertreatment system is characterized following end-of-life catalyst aging to meet final Tier 4 off-highway emission requirements. This system consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH3) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system durability as the catalysts were aged to 500 desulfation events using an off-highway diesel engine.
Technical Paper

Hardware-In-the-Loop (HIL) Modeling and Simulation for Diesel Aftertreatment Controls Devlopment

2009-10-06
2009-01-2928
This paper addresses Hardware-In-the-Loop modeling and simulation for Diesel aftertreatment controls system development. Lean NOx Trap (LNT) based aftertreatment system is an efficient way to reduce NOx emission from diesel engines. From control system perspective, the main challenge in aftertreatment system is to predict temperature at various locations and estimate the stored NOx in LNT. Accurate estimation of temperatures and NOx stored in the LNT will result in an efficient system control with less fuel penalty while still maintaining the emission requirements. The optimization of the controls will prolong the lifespan of the system by avoiding overheating the catalysts, and slow the progressive process of component aging. Under real world conditions, it is quite difficult and costly to test the performance of a such complex controller by using only vehicle tests and engine cells.
Journal Article

Transient On-Road Emission Reduction of an LNT + SCR Aftertreatment System

2008-10-07
2008-01-2641
An LNT + SCR diesel aftertreatment system was developed in order to meet the 2010 US HD EPA on-road, and tier 4 US HD EPA off-road emission standards. This system consists of a fuel reformer (REF), lean NOx trap (LNT), catalyzed diesel particulate filter (DPF), and selective catalytic reduction (SCR) catalyst arranged in series to reduce tailpipe nitrogen oxides (NOx) and particulate matter (PM). This system utilizes a REF to produce hydrogen (H2), carbon monoxide (CO) and heat to regenerate the LNT, desulfate the LNT, and actively regenerate the DPF. The NOx stored on the LNT is reduced by the H2 and CO generated in the REF converting it to nitrogen (N2) and ammonia (NH3). NH3, which is normally an undesired byproduct of LNT regeneration, is stored in the downstream SCR which is utilized to further reduce NOx that passes through the LNT. Engine exhaust PM is filtered and trapped by the DPF reducing the tailpipe PM emissions.
Journal Article

NOx Performance of an LNT+SCR System Designed to Meet EPA 2010 Emissions: Results of Engine Dynamometer Emission Tests

2008-10-07
2008-01-2642
The paper covers the NOx performance evaluation of an LNT + SCR system designed to meet the 2010 on-highway heavy-duty (HD) US EPA emission standards. The system combines a fuel reformer catalyst (REF), lean NOx trap (LNT), diesel particulate filter (DPF), and selective catalytic reduction (SCR) in series, to reduce engine-out NOx and PM. System NOx reduction performance was verified in an engine dynamometer test cell, using a 2007 7.6L medium-duty engine. System NOx performance was characterized using fresh LNT and SCR along with hydrothermal aged LNT and fresh SCR. Test results show levels consistent with EPA 2010 limits under various test conditions. Catalysts performance was characterized at eight steady engine-operating conditions (A100, B50, B75, A75, B100, C100, C75, C50, across a 13-mode Supplemental Emission Test (SET), and an on-highway Heavy Duty Federal Test Procedure (HD-FTP).
Technical Paper

Global Cooperation and Innovation: a case study about the development of the world's first application of an electronic locker differential integrated to a front transversal transmission

2008-10-07
2008-36-0195
This article aims to show how the development of innovative products within the automotive industry in Brazil has been oriented, linking technological competences construction in local poles with suppliers and headquarters cooperation. The discussion in this article is illustrated by the development and application analysis of an electronic locker differential integrated to a front transversal transmission, which is the world's first commercial application. It proposes, through a case study, a relationship between the subjects discussed in here and the new tendencies for product development within the automotive industry and also for the world's R&D flow.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
X