Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulated Performance of a Diesel Aftertreatment System for U.S. 2010 Application

2006-10-31
2006-01-3551
An aftertreatment system for medium and heavy-duty diesel engines has been modeled for U.S. 2010 application. The aftertreatment system is comprised of a lean NOx trap (LNT) and an ammonia selective catalytic reduction (SCR) catalyst in series. Descriptions of the fully transient, one-dimensional LNT and SCR models are presented. The models simulate flow, heat transfer, and chemical reactions in the LNT and SCR catalysts. The models can be used to predict catalyst performance over a range of operating conditions and driving cycles. Simulated results of NOx conversion efficiency, species concentrations, and gas temperature were compared to experimental data for a 13-mode test. The model results showed the LNT-SCR model predicts system performance with reasonable accuracy in comparison to experimental data. Therefore, two model applications were investigated. First, LNT and SCR volumes were varied to examine the effect on NOx conversion efficiency and NH3 production.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
X