Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Reduced Order Model for Prediction of the Noise Radiated by a High-Speed EV Transmission using Statistical Energy Analysis

2023-05-08
2023-01-1113
The transmission is an integral part of the driveline in an automotive vehicle. Global vehicle pass-by noise regulations are becoming more stringent and transmissions are expected to be very quiet. Typically for an automotive system, engine is the most dominant noise source and transmissions have been considered a secondary noise source but as the trend is shifting towards more electric vehicles where engine noise is absent and overall vehicle is becoming quieter, the transmission can be more of a significant noise contributor. Gear whine is the major concern for sound radiation from the transmission. The gear whine simulation and acoustic radiation analysis of the transmission using traditional methods (FEM and BEM) is a crucial but very time-consuming part of the product development cycle. On top of that, electric vehicle transmissions operate at higher RPM which in turn increases the excitation frequency arising from the gear whine phenomenon.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

2017-06-05
2017-01-1792
Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Technical Paper

Timing Gear Whine Noise Reduction Methodology and Application in Superchargers

2005-05-16
2005-01-2450
Extensive experimental and numerical investigations were done to improve the vibration and acoustic performance due to excitation at the timing gears of automotive supercharger. Gear excitation, system response, and covers have been studied to find the most cost efficient method for reducing gear whine noise. Initially, gear excitation was studied where it was found that transmission error due to profile quality was the dominant source parameter for gear whine noise. To investigate the system effects on gear noise, a parametric study was carried using FEM model of the supercharger, with special interests in optimizing dynamic characteristics of internal components and the coupling to supercharger housing. The BEM model of the corresponding supercharger was built to predict the noise improvement after dynamic optimization of the system. Good correlations were observed between experimental and numerical results in both dynamic and acoustic parameters.
Technical Paper

Application of Spectral-Based Substructuring Approach to Analyze the Dynamic Interactions of Powertrain Structures

2003-05-05
2003-01-1731
A spectral-based substructuring approach applying linear frequency response functions (FRF) is proposed for improving the accuracy of simulating the dynamics of coupled systems. The method also applies a least square singular value decomposition (SVD) scheme to overcome the inherent computational deficiency in the basic substructuring formulation. The computational problem is caused by the magnification of measurement errors during any one of the matrix inversion calculations required for this method. The primary objective of applying this approach is to examine the possibility of analyzing higher frequency response that is normally not possible using conventional modeling technique such as the direct finite and boundary element, and lumped parameter techniques. In this study, additional concepts are also evaluated to quantify the limitations and range of applicability of the proposed substructuring approach for simulating the vibration response of complex powertrain structures.
Technical Paper

On the Calibration of Single-Shot Planar Laser Imaging Techniques in Engines

2002-03-04
2002-01-0748
The noise characteristics of four camera systems representative of those typically used for laser-imaging experiments (a back-illuminated slow-scan camera, a frame-straddling slow-scan camera, an intensified slow-scan camera and an intensified video-rate camera) were investigated, and the results are presented as a function of the signal level and illumination level. These results provide the maximum possible signal-to-noise ratio for laser-imaging experiments, and represent the limit of quantitative signal interpretation. A calibration strategy for engine data that limits the uncertainties associated with thermodynamic and optical correction was presented and applied to engine data acquired with two of the camera systems. When a rigorous analysis of the signal is performed it is seen that shot noise limits the quantitative interpretation of the data for most typical laser-imaging experiments, and obviates the use of single-pixel data.
X