Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
Technical Paper

Electric Vehicle Battery Safety and Compliance

2023-04-11
2023-01-0597
Electric vehicles (EVs) and the development around them has been rapid in recent years. As the battery is the most essential component of an electric vehicle, a lot of research and analysis has been focused on ensuring safe and reliable performance of batteries. Considering the location, size, and operating conditions for EV batteries, they must be designed with an in-built safety infrastructure keeping in mind certain realistic scenarios such as fire exposure, mechanical vibration, collisions, over-charging, single cell failures, and others. In this paper, we discuss an overview of various EV battery failure mechanisms, present current safety and abuse testing methods and standards associated with such mechanisms and discuss the need for the development and implementation of additional testing standards to better characterize the safety performance of EV battery packs.
Journal Article

Crash Test Methodology for Electric Scooters with Anthropomorphic Test Device (ATD) Riders

2022-03-29
2022-01-0853
As micromobility devices (i.e., e-bikes, scooters, skateboards, etc.) continue to increase in popularity, there is a growing need to test these devices for varying purposes such as performance assessment, crash reconstruction, and design of new products. Although tests have been conducted across the industry for electric scooters (e-scooters), this paper describes a novel method for crash testing e-scooters with anthropomorphic test devices (ATDs) “riding” them, providing new sources for data collection and research. A sled fixture was designed utilizing a pneumatic crash rail to propel the scooters with an overhead gantry used for stabilization of the ATD until release just prior to impact. The designed test series included impacts with a 5.5-inch curb at varying incidence angles, a stationary vehicle, or a standing pedestrian ATD. Test parameter permutations included changing e-scooter tire sizes, impact speeds, and rider safety equipment.
Journal Article

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

2019-04-02
2019-01-0420
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells.
Journal Article

All-Terrain Vehicle (ATV) Handling and Control, Analysis of Objective Data

2017-03-28
2017-01-1557
Because the great majority of All-Terrain Vehicles (ATVs) use a solid rear axle for improved off-road mobility, these vehicles typically transition from understeer to oversteer with increased cornering severity in tests customarily used by automobile manufacturers to measure steady-state vehicle handling properties. An oversteer handling response is contrary to the accepted norm for on-road passenger vehicles and, for this reason, has drawn scrutiny from numerous researchers. In this paper, an evaluation of ATV handling is presented in which 10 participants operated an ATV that was configured to have two different steady-state cornering characteristics. One configuration produced an approximately linear understeer response (labeled US) and the other configuration transitioned from understeer to oversteer (labeled US-OS) with increasing lateral acceleration in constant-radius turn tests conducted on a skid pad.
Technical Paper

Steering Maneuver with Furrow-Tripped Rollovers of a Pickup and Passenger Car

2015-04-14
2015-01-1477
Extensive testing has been conducted to evaluate both the dynamic response of vehicle structures and occupant protection systems in rollover collisions though the use of Anthropomorphic Test Devices (ATDs). Rollover test methods that utilize a fixture to initiate the rollover event include the SAE2114 dolly, inverted drop tests, accelerating vehicle body buck on a decelerating sled, ramp-induced rollovers, and Controlled Rollover Impact System (CRIS) Tests. More recently, programmable steering controllers have been used with sedans, vans, pickup trucks, and SUVs to induce a rollover, primarily for studying the vehicle kinematics for accident reconstruction applications. The goal of this study was to create a prototypical rollover crash test for the study of vehicle dynamics and occupant injury risk where the rollover is initiated by a steering input over realistic terrain without the constraints of previously used test methods.
Technical Paper

Recreational Off-Highway Vehicle (ROV) Handling and Control

2012-04-16
2012-01-0239
Through testing conducted by multiple facilities, it has been observed that the class of compact two-person vehicles designed exclusively for off-road operation known as Recreational Off-Highway Vehicles (ROVs) exhibit a range of steady-state handling characteristics - including both understeer and understeer transitioning to oversteer as measured in circle-turn tests similar to those set forth in SAEJ266. This handling characteristic is different from on-road passenger cars and light trucks which, under all but heavy loading conditions, exhibit linear range and limit understeer steady-state cornering behavior. Limit understeer is considered desirable for on-road vehicles because it provides a directionally stable and generally predictable control response. In the research presented in this paper, the handling qualities, including controllability, of a ROV which was modified to have different steady-state handling characteristics ranging from understeer to oversteer is examined.
X