Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Analysis of flatness based active damping control of hybrid vehicle transmission

2024-04-09
2024-01-2782
This paper delves into the investigation of flatness-based active damping control for hybrid vehicle transmissions. The main objective is to improve the current in-production controller performances without the need for additional sensors or observers. The primary goals include improving torque setpoint tracking, enhancing robustness margins, and ensuring zero steady-state torque correction. The investigation proceeds in several steps: Initially, both the general differential flatness property and the identification of flat outputs in linear dynamical systems are revisited. Subsequently, the bond graph formalism is employed to deduce straightforwardly the dynamical equations of the system. Next, a new flat output of the vehicle transmission is identified and utilized to formulate the trajectory tracking controller to align with the required control objectives and to fulfill the system constraints.
Technical Paper

Torque Converter Modeling for Torque Control of Hybrid Electric Powertrains

2024-04-09
2024-01-2780
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Active Damping Control and Architecture within a Hybrid Supervisor Control Structure

2024-04-09
2024-01-2144
This paper focuses on an inherent problems of active damping control prevalent in contemporary hybrid torque controls. Oftentimes, a supervisory torque controller utilizes simplified system models with minimal system states representation within the optimization problem, often not accounting for nonlinearities and stiffness. This is motivated by enabling the generation of the optimum torque commands with minimum computational burden. When inherent lash and stiffness of the driveline are not considered, the resulting command can lead to vibrations and oscillations in the powertrain, reducing performance and comfort. The paper proposes a Linear Quadratic Integral (LQI)-based compensator to be integrated downstream the torque supervisory algorithm, which role is to shape transient electric machine torques, compensating for the stiffness and backlash present in the vehicle while delivering the driver-requested wheel torque.
Technical Paper

Impact of Sampling Time, Actuation/measurement Delays and Controller Calibration on Closed-loop Frequency Response for Non-linear Systems

2023-04-11
2023-01-0453
During input tracking, closed-loop performance is strongly influenced by the dynamic of the system under control. Internal and external delays, such as actuation and measurement delays, have a detrimental effect on the bandwidth and stability. Additionally, production controllers are discrete in nature and the sampling time selection is another critical factor to be considered. In this paper we analyze the impact of both transported delay and controller sampling time on tracking performance using an electric machine speed-control problem as an example. A simple linear PI controller is used for this exercise. Furthermore, we show how the PI parameters can be adjusted to maintain a certain level of performance as the delays and sampling times are modified. This is achieved through an optimization algorithm that minimizes a specifically designed cost function.
Technical Paper

Nonlinear, Concave, Constrained Optimization in Six-Dimensional Space for Hybrid-Electric Powertrains

2023-04-11
2023-01-0550
One of the building blocks of the Stellantis hybrid powertrain embedded control software computes the maximum and minimum values of objective functions, such as output torque, as a function of engine torque, hybrid motor torque and other variables. To test such embedded software, an offline reference function was created. The reference function calculates the ideal minimum and maximum values to be compared with the output of the embedded software. This article presents the offline reference function with an emphasis on mathematical novelties. The reference function computes the minimum and maximum points of a linear objective function as a function of six independent variables, subject to 42 linear and two nonlinear constraints. Concave domains, curved surfaces, disjoint domains and multiple local extremum points challenge the algorithm. As a theorem, the conditions and methods for running trigonometric calculations in 6D Euclidean space are presented.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
Technical Paper

Sliding Mesh Fan Approach Using Open-Source Computational Fluid Dynamics to Investigate Full Vehicle Automotive Cooling Airflows

2023-04-11
2023-01-0761
Cooling airflow is an essential factor when it comes to vehicle performance and operating safety. In recent years, significant efforts have been made to maximize the flow efficiency through the heat exchangers in the under-hood compartment. Grille shutters, new fan shapes, better sealings are only some examples of innovations in this field of work. Underhood cooling airflow simulations are an integral part of the vehicle development process. Especially in the early development phase, where no test data is available to verify the cooling performance of the vehicle, computational fluid dynamics simulations (CFD) can be a valuable tool to identify the lack of fan performance and to develop the appropriate strategy to achieve airflow goals through the heat exchangers. For vehicles with heat exchangers in the underhood section the airflow through those components is of particular interest.
Technical Paper

Cybersecurity by Agile Design

2023-04-11
2023-01-0035
ISO/SAE 21434 [1] Final International Standard was released September 2021 to great fanfare and is the most prominent standard in Automotive Cybersecurity. As members of the Joint Working Group (JWG) the authors spent 5 years developing the 84 pages of precise wording acceptable to hundreds of contributors. At the same time the auto industry had been undergoing a metamorphosis probably unmatched in its hundred-year history. A centerpiece of the metamorphosis is the adoption of the Agile development method to meet market demands for time-to-market and flexibility of design. Unfortunately, a strategic decision was made by the JWG to focus ISO/SAE 21434 on the V-Model method. Agile does not break ISO/SAE 21434. Agile is a framework that can be adapted to suit any process. In the end the goals are the same regardless of development method; security by design must be achieved.
Technical Paper

Microprocessor Execution Time and Memory Use for Battery State of Charge Estimation Algorithms

2022-03-29
2022-01-0697
Accurate battery state of charge (SOC) estimation is essential for safe and reliable performance of electric vehicles (EVs). Lithium-ion batteries, commonly used for EV applications, have strong time-varying and non-linear behaviour, making SOC estimation challenging. In this paper, a processor in the loop (PIL) platform is used to assess the execution time and memory use of different SOC estimation algorithms. Four different SOC estimation algorithms are presented and benchmarked, including an extended Kalman filter (EKF), EKF with recursive least squares filter (EKF-RLS) feedforward neural network (FNN), and a recurrent neural network with long short-term memory (LSTM). The algorithms are deployed to two different NXP S32Kx microprocessors and executed in real-time to assess the algorithms' computational load. The algorithms are benchmarked in terms of accuracy, execution time, flash memory, and random access memory (RAM) use.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Technical Paper

Multiple Metamodeling Approaches for Improved Design Space Mapping

2021-04-06
2021-01-0840
The complexities involved in an optimization problem at a system level require knowledge base that has information on different approaches and customization of these approaches to a specific class of the optimization problems. One approach that is commonly used is the metamodel based design optimization. The metamodel is 1) a conceptual model for capturing, in abstract terms, essential characteristics of a given optimization problem, and 2) a schema of sufficient formality to enable the problem modeled to be serialized to statements in a concrete optimization language [1]. Optimization is performed based on this metamodel. This metamodel approach has been proven effective and accurate in providing the global optimum. Depending upon the computational hardware availability in an organization, the metamodel based optimization could be much faster way of achieving the optimized solution. However, the accuracy of the optimization is highly dependent on the quality of metamodel generated.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
X