Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Cold Start Emission Reduction by Barrier Discharge

2000-10-16
2000-01-2891
Dielectric barrier discharge (DBD) offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic measure for exhaust gas treatment is the instantaneous activity at ambient temperature from the starting of the engine. The investigations reviewed in this paper are dealing with the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma-system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the New European Driving Cycle show a hydrocarbon conversion of more than 42% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced.
Technical Paper

Lean-Combustion Spark-Ignition Engine Exhaust Aftertreatment Using Non Thermal Plasma

1998-10-19
982512
Dielectric barrier discharges offer the advantage to excite molecules to reaction processes on a low temperature level in an O2 containing exhaust gas of gasoline or diesel engines. With the aim of a flexible coaxial reactor and a compact and efficient generator the influence of geometric and electric parameters on the reduction of exhaust gas components was determined. Geometric parameters studied were gap width, length, contour of the reactor. Electric parameters were: voltage curve, voltage height, frequency and electric power. Using the advantage of low temperature reactions it was possible to reduce the HC emission of a gasoline engine by about 35% within an electric power of 1000 W.
Technical Paper

Methods to Analyze Non-Regulated Emissions from Diesel Engines

1994-10-01
941952
Passenger cars with diesel engines have better fuel economy than cars with gasoline engines. Also diesel engines typically have lower HC and CO emissions than all but the very best, state-of-the-art gasoline engines. On the other hand, diesel NOx and particulate emissions are higher, but recent developments have significantly reduced diesel particulate emissions. While the regulated emissions from both engines are well known, there are relatively few data on the non-regulated emissions for modern diesel engines.
Technical Paper

Diesel Additive Technology Effects on Injector Hole Erosion/Corrosion, Injector Fouling and Particulate Traps

1993-10-01
932739
Fuel additives can contribute to maintaining the performance of diesel engines in a variety of ways. This holds true for current and future engine technology. Fouling of indirect injection engines (IDI) has been studied at length. Fouling of direct injection engines (Dl) is less known and less well understood. Problems associated with Dl fouling and a proposed mechanism for it are discussed. Additive effectiveness in preventing injector fouling is confirmed. Injector hole corrosion/erosion, as experienced in the Cummins N14 engine, can be avoided by the appropriate additive chemistry. Particulate traps can also benefit from ashless additive technology aimed at increasing the time between regeneration steps, hence improving effective trap life.
X