Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Technical Evaluation of the Obstacle Detection for Automated Shuttle Buses

2023-06-26
2023-01-1227
With the law on autonomous driving and the associated ordinance, it has been possible in Germany since June 2022 to grant operating permission to vehicles with automated driving function and to admit them to road traffic. For public transport, automated shuttle buses offer the opportunity to maintain the existing service despite a shortage of personnel and to close gaps in supply. The safety of vehicle occupants, other road users and third parties is a key concern in the operation of automated shuttle buses. As part of the project RABus “Real laboratory for automated bus operation in public transport in urban and rural areas”, which is funded by the Ministry of Transport Baden-Württemberg, the operational reliability of automated shuttle buses (SAE Level 4) in public transport is being scientifically investigated. In the implementation of automated driving, obstacle detection/avoidance is a safety-critical driving function.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

An Operating Strategy Approach for Serial/Parallel Hybrid Electric Vehicles

2022-06-14
2022-37-0016
In this paper, a serial/parallel hybrid electric vehicle with a 17 kWh battery and 400 V voltage level is simulated. The vehicle is a C-segment vehicle, which has optimized driving resistances. It also has an external recharge possibility, which enables fully electric driving. The vehicle uses an Otto-engine concept as well as two electric motors. One motor is a permanent magnet synchronous motor and can be used as traction motor or generator, the other one is an induction motor used as main traction motor for the vehicle. The vehicle uses a 2-speed gearbox, where the electric motors are mounted in P2-configuration. To reach optimal results for the fuel consumption, an operating strategy based on the Equivalent Consumption Minimization Strategy (ECMS) is introduced and implemented in the vehicle simulation.
Journal Article

Investigation of Transient Aerodynamic Effects on Public Roads in Comparison to Individual Driving Situations on a Test Site

2020-04-14
2020-01-0670
Natural wind, roadside obstacles, terrain roughness, and traffic influence the incident flow of a vehicle driven on public roads. These transient on-road conditions differ from the idealized statistical steady-state flow environment utilized in CFD simulations and wind tunnel experiments. To understand these transient on-road conditions better, measurements were performed on German public highways and on a test site. A compact car was equipped with a measurement system that is capable of determining the transient airflow around the vehicle and the vehicle’s actual driving state. This vehicle was driven several times on a predefined 200 km long route to investigate different traffic densities on public highways in southern Germany. During the tests the transient incident flow and pressure distribution on the vehicle surface were measured.
Journal Article

Experimental Investigation of Automotive Vehicle Transient Aerodynamics with a Reduced-Scale Moving-Model Crosswind Facility

2020-04-14
2020-01-0671
Automotive vehicles operate in complex, transient aerodynamic conditions that can potentially influence their operational efficiency, performance and safety. A moving-model facility combined with a wind-tunnel is an experimental methodology that can be utilized to model some of these transient aerodynamic conditions. This experimental methodology is an alternative to wind-tunnel experiments with additional crosswind generators or actively yawing models, and has the added benefit of modelling the correct relative motion between the vehicle and the ground/infrastructure. Experiments using a VW Golf 7 were performed with a 1:10 scale model at the moving-model facility at DLR, Göttingen and a full-scale, operational vehicle at the BMW Ascheim side-wind facility.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Journal Article

Subjective Perception and Evaluation of Driving Dynamics in the Virtual Test Drive

2017-03-28
2017-01-1564
In addition to the analysis of human driving behavior or the development of new advanced driver assistance systems, the high simulation quality of today’s driving simulators enables investigations of selected topics pertaining to driving dynamics. With high reproducibility and fast generation of vehicle variants the subjective evaluation process leads to a better system understanding in the early development stages. The transfer of the original on-road test run to the virtual reality of the driving simulator includes the full flexibility of the vehicle model, the maneuver and the test track, which allows new possibilities of investigation. With the opportunity of a realistic whole-vehicle simulation provided by the Stuttgart Driving Simulator new analysis of the human’s thresholds of perception are carried out.
Journal Article

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-04-05
2016-01-1603
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. But cooling air not only affects the internal flow of the vehicle but also changes the flow around it. This paper will show changes in the flow field around the generic DrivAer model resulting from cooling air flow, especially in the wake behind the car and in the region around the front wheels. The results were gathered using PIV measurements, multi-hole-probe measurements and pitot tube measurements in the 1:4 model scale wind tunnel of IVK University of Stuttgart.
Journal Article

Consumption Optimization in Battery Electric Vehicles by Autonomous Cruise Control using Predictive Route Data and a Radar System

2013-04-08
2013-01-0984
This paper presents an autonomous cruise control for battery electric vehicles. The presented approach is based on the usage of predictive route data which is extracted out of a digital map and a wide range radar system in order to capture vehicles in front. By using the predictive route data and the information of the radar system, the autonomous cruise control can control the vehicle's speed over a wide range of driving situations without any driver interaction. The main aim of the presented autonomous cruise control is to optimize the battery electric vehicle's energy consumption. The main idea is to use predictive route data in order to calculate a consumption optimal vehicle speed trajectory by means of online optimization. The benefits of the autonomous cruise control are shown by means of real test drives and measured data evaluation.
Technical Paper

Simulation of the Post-Oxidation in Turbo Charged SI-DI-Engines

2011-04-12
2011-01-0373
Turbocharged SI-DI-engines in combination with a reduction of engine displacement (“Downsizing”) offer the possibility to remarkably reduce the overall fuel consumption. In charged mode it is possible to scavenge fresh unburnt air into the exhaust system if a positive slope during the overlap phase of the gas exchange occurs. The matching of the turbo system in SI-engines always causes a trade-off between low-end torque and high power output. The higher mass flow at low engine speeds of an engine using scavenging allows a partial solution of this trade-off. Thus, higher downsizing grades and fuel consumption reduction potential can be obtained. Through scavenging the global fuel to air ratio deviates from the local in-cylinder fuel to air ratio. It is possible to use a rich in-cylinder fuel to air ratio, whereas the global fuel to air ratio remains stochiometrical. This could be very beneficial to reduce the effect of catalytic aging on the one hand and engine knock on the other hand.
Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Technical Paper

Optimization of a CNG Driven SI Engine Within a Parallel Hybrid Power Train by Using EGR and an Oversized Turbocharger with Active-WG Control

2010-04-12
2010-01-0820
The hybrid power train technology offers various prospects to optimize the engine efficiency in order to minimize the CO₂ emissions of an internal-combustion-engine-powered vehicle. Today different types of hybrid architectures like parallel, serial, power split or through-the-road concepts are commonly known. To achieve lowest fuel consumption the following hybrid electric vehicle drive modes can be used: Start/Stop, pure electric/thermal driving, recuperation of brake energy and the hybrid mode. The high complexity of the interaction between those power sources requires an extensive investigation to determine the optimal configuration of a natural-gas-powered SI engine within a parallel hybrid power train. Therefore, a turbocharged 1.0-liter 3-cylinder CNG engine was analyzed on the test bench. Using an optimized combustion strategy, the engine was operated at stoichiometric and lean air/fuel ratio applying both high- and low-pressure EGR.
X