Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Technical Evaluation of the Obstacle Detection for Automated Shuttle Buses

2023-06-26
2023-01-1227
With the law on autonomous driving and the associated ordinance, it has been possible in Germany since June 2022 to grant operating permission to vehicles with automated driving function and to admit them to road traffic. For public transport, automated shuttle buses offer the opportunity to maintain the existing service despite a shortage of personnel and to close gaps in supply. The safety of vehicle occupants, other road users and third parties is a key concern in the operation of automated shuttle buses. As part of the project RABus “Real laboratory for automated bus operation in public transport in urban and rural areas”, which is funded by the Ministry of Transport Baden-Württemberg, the operational reliability of automated shuttle buses (SAE Level 4) in public transport is being scientifically investigated. In the implementation of automated driving, obstacle detection/avoidance is a safety-critical driving function.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

Combined Physical and ANN-Based Engine Model of a Turbo-Charged DI Gasoline Engine with Variable Valve Timing

2023-04-11
2023-01-0194
High-efficient simulations are mandatory to manage the ever-increasing complexity of automotive powertrain system and reduce development time and costs. Integrating AI methods into the development process provides an ideal solution thanks to massive increase in computational power. Based on an 1D physical engine model of a turbo-charged direct injection gasoline engine with variable valve timing (VVT), a high-performance hybrid simulation model has been developed for increasing computing performance. The newly developed model is made of a physics-based low-pressure part including intake and exhaust peripheries and a neural-network-based high-pressure part for combustion chamber calculations. For the training and validation of the combustion chamber neural networks, a data set with 10.5 million operating points was generated in a short time thanks to the parallelizable combustion chamber simulations in stand-alone mode.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Journal Article

Investigation of Transient Aerodynamic Effects on Public Roads in Comparison to Individual Driving Situations on a Test Site

2020-04-14
2020-01-0670
Natural wind, roadside obstacles, terrain roughness, and traffic influence the incident flow of a vehicle driven on public roads. These transient on-road conditions differ from the idealized statistical steady-state flow environment utilized in CFD simulations and wind tunnel experiments. To understand these transient on-road conditions better, measurements were performed on German public highways and on a test site. A compact car was equipped with a measurement system that is capable of determining the transient airflow around the vehicle and the vehicle’s actual driving state. This vehicle was driven several times on a predefined 200 km long route to investigate different traffic densities on public highways in southern Germany. During the tests the transient incident flow and pressure distribution on the vehicle surface were measured.
Journal Article

Experimental Investigation of Automotive Vehicle Transient Aerodynamics with a Reduced-Scale Moving-Model Crosswind Facility

2020-04-14
2020-01-0671
Automotive vehicles operate in complex, transient aerodynamic conditions that can potentially influence their operational efficiency, performance and safety. A moving-model facility combined with a wind-tunnel is an experimental methodology that can be utilized to model some of these transient aerodynamic conditions. This experimental methodology is an alternative to wind-tunnel experiments with additional crosswind generators or actively yawing models, and has the added benefit of modelling the correct relative motion between the vehicle and the ground/infrastructure. Experiments using a VW Golf 7 were performed with a 1:10 scale model at the moving-model facility at DLR, Göttingen and a full-scale, operational vehicle at the BMW Ascheim side-wind facility.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

Investigation of Flame Propagation Description in Quasi-Dimensional Spark Ignition Engine Modeling

2018-09-10
2018-01-1655
The engine development process has been enhanced significantly by virtual engineering methods during the last decades. In terms of in-cylinder flow field, charge flow and combustion modelling, 3D-CFD (three dimensional) simulations enable detailed analysis and extended investigations in order to gain additional knowledge about design parameters. However, the computational time of the 3D-CFD is an obvious drawback that prevents a reasonable application for extensive analysis with varying speed, load and transient conditions. State-of-the-art 0D (zero dimensional) approaches close the gap between the demand of high computational efficiency and a satisfying accordance with experimental data. Recent improvements of phenomenological combustion approaches for gasoline spark ignition engines deal with the consideration of detailed flow parameters, the accuracy of the laminar flame speed calculation and the prediction of the knock limit.
Journal Article

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-04-05
2016-01-1603
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. But cooling air not only affects the internal flow of the vehicle but also changes the flow around it. This paper will show changes in the flow field around the generic DrivAer model resulting from cooling air flow, especially in the wake behind the car and in the region around the front wheels. The results were gathered using PIV measurements, multi-hole-probe measurements and pitot tube measurements in the 1:4 model scale wind tunnel of IVK University of Stuttgart.
Journal Article

Consumption Optimization in Battery Electric Vehicles by Autonomous Cruise Control using Predictive Route Data and a Radar System

2013-04-08
2013-01-0984
This paper presents an autonomous cruise control for battery electric vehicles. The presented approach is based on the usage of predictive route data which is extracted out of a digital map and a wide range radar system in order to capture vehicles in front. By using the predictive route data and the information of the radar system, the autonomous cruise control can control the vehicle's speed over a wide range of driving situations without any driver interaction. The main aim of the presented autonomous cruise control is to optimize the battery electric vehicle's energy consumption. The main idea is to use predictive route data in order to calculate a consumption optimal vehicle speed trajectory by means of online optimization. The benefits of the autonomous cruise control are shown by means of real test drives and measured data evaluation.
X