Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Implementation of ABS System on an Existing Heavy Trucks Line-up in Accordance to Brazilian Resolution No. 312/09 (CONTRAN)

2012-10-02
2012-36-0466
The automotive industry has been increasingly researching and working on improving vehicle and passenger safety over the years. Following countries such as the United States and European Union, the Brazilian government has been publishing many resolutions with the objective of improving the safety of their fleet. With the publication of resolution 312 from CONTRAN (National Traffic Counsel), on April 3rd, 2009, the installation of ABS (Anti-lock Brake System) feature has become mandatory for all car and truck models to be sold in Brazil, following a staggered implementation starting on January 1st, 2010. The ABS system adds to the vehicle's current brake system, not allowing the wheels to lock during braking, which helps preserve the vehicle's stability and improve its safety, thus avoiding accidents. The technology, which is already available in a few car models, is not yet developed for the heavy trucks applications in this market.
Technical Paper

Durability Analysis of Pickup Trucks Using Non-Linear FEA

1996-10-01
962223
One of the difficulties in predicting the structural behavior of vehicles such as the full size pickup trucks is the non-linearities involved during the course of the durability events. The current practice in durability and fatigue life prediction of vehicles is to conduct fatigue analysis on the structure using the measured road loads and estimate the fatigue incurred using the in-house and commercially available programs. In this paper the authors attempt to seek a different solution to the durability problem by conducting an upfront non-linear analysis. The results are then compared with the prediction by the fatigue life program in addition to the durability test results obtained on the early prototypes. To conduct the non-linear analysis ABAQUS FEA program is chosen for this investigation and for the linear analysis MSC/NASTRAN is utilized. Subsequently in-house fatigue program is used to predict the fatigue incurred.
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

1996-10-01
962169
This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

Fatigue Service Histories: Techniques for Data Collection and History Reconstruction

1982-02-01
820093
A number of service fatigue history summarization statistics are examined for their suitability in regenerating the history in the laboratory. Evaluation criteria applied include: fatigue damage-per-level equivalence, implementation simplicity, waveform similarity, and fatigue life equivalence. The results suggest that a three-dimensional “From-To” matrix that includes sequence information about the original variable amplitude histories, is optimal for service history reconstruction.
X