Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Friction Reduction in Lubricated Components Through Engine Oil Formulation

1998-10-19
982640
Improvement of engine fuel efficiency through the use of low friction engine oils is a major task in engine lubrication research. This friction reduction can be achieved by improving the rheological characteristics and elastohydrodynamic (EHD) properties of engine oils, and by controlling boundary chemical interactions between oil-based additives and lubricated components in the engine. In order to achieve minimal frictional power loss under all lubrication regimes, engine tribological systems must be designed to effectively use advanced lubricant technology, material and surface modifications. This paper presents results of cooperative research addressing opportunities for minimizing friction through extension of hydrodynamic lubrication regime in lubricated components using various formulation approaches. A set of experimental oils has been evaluated using laboratory test rigs that simulate hydrodynamic, EHD, mixed and boundary lubrication.
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

1996-10-01
962169
This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
Technical Paper

Application of Chemical Measurements to Select Weather Resistant Automotive Paint Systems

1995-05-17
953394
Painting is the most difficult, the most costly, and the most polluting step in manufacturing vehicles. When low weathering performance paints are used, the results are dissatisfied customers, and huge warranty costs. It would obviously be wise to fully characterize the weathering performance of new coatings systems before they are used. Unfortunately this is not always practical. Coating formulations are changing rapidly in the States to comply with solvent emission regulations, the introduction of plastic substrates, and customer tastes. There is rarely enough time to wait ten years for outdoors exposure tests to reveal the "true" weathering performance of coatings before marketing vehicles. As a result, accelerated tests are often used to guide decisions. However, the results of such tests can be misleading because the harsh exposure conditions used can distort the chemistry of degradation.
Technical Paper

Adhesion of Polyurethane Foam to Automotive Interior Thermoplastics

1995-02-01
950860
A method was adapted to measure the adhesion strength of polyurethane, semi-flexible foams to thermoplastic substrates. This method (lap-joint shear) was used to determine the effect of six (6) variables upon adhesion. These variables were: 1.) the type of substrate material, 2.) the type of polyurethane foam, 3.) the weight percentage of water in the polyurethane formulation (the degree to which the foam is blown and the chemical constituents), 4.) the chemical index of the polyurethane (the ratio of isocyanate to polyol resin), 5.) the surface roughness of the substrate, and 6.) the temperature of the polyurethane materials. Five (5) typical automotive interior thermoplastic substrates were studied: 1.) Polypropylene with preblended glass, 2.) Polycarbonate/ABS, 3.) PPO/HIPS with preblended glass, 4.) SMA with in-house dry blended glass, and 5.) SMA with preblended glass.
Technical Paper

The Effect of Chemicals and Solvents on Plastics -An Engineering Practice Guide

1995-02-01
950634
The presence of a foreign substance on or within a polymer often affects the mechanical, chemical and thermal properties of the material. The change in strength and rigidity of a polymer resulting from the plasticizing action of a sorbed chemical or due to the withdrawal of an added plasticizer by the leaching operation can seriously affect the useful life of the material. In the real engineering world, incompatible chemicals and lubricants get onto various plastic components unexpectedly through design, manufacturing processes, customers services and repairs. This paper presents a number of case-studies which illustrate how undesirable chemicals found on plastic parts can affect product performance and cause damage to the parts.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

1995-02-01
950801
Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
Technical Paper

In-Service Engine Oil Condition Monitoring - Opportunities and Challenges

1994-10-01
942028
A vehicle system to monitor the actual condition of engine oil in service would provide the customer with the opportunity to utilize the full useful life of the oil and would minimize problems which can occur when oils remain in the engine too long and are excessively degraded and/or contaminated. This paper describes limitations of some systems which have been proposed, outlines the requirements and potential difficulties related to development of sensors designed to monitor changes in chemical properties of the oil, and describes laboratory and vehicle evaluations of a candidate sensor.
Technical Paper

The Molecular Analysis of Sulfate Species in Environmental Aerosols Using Chemical Ionization Mass Spectrometry

1977-02-01
770063
Speciation of sulfurous acid, sulfuric acid and ammonium sulfate collected from the aerosol phase on a Fluoropore filter has been readily accomplished using techniques of chemical ionization mass spectrometry combined with thermal separation. Thermal separation of ammonium hydrogen sulfate from ammonium sulfate was not possible. Spectral separation of these species by selective ionization is proposed. Analysis of sulfate aerosols collected from ambient air and catalyzed vehicle emissions is described. It was found that sulfuric acid aerosol was rapidly converted to ammonium sulfate or ammonium hydrogen sulfate in the presence of ambient concentrations of ammonia. Ambient samples collected in the Detroit metropolitan area have been found to contain only trace quantities of sulfuric aicd. Sulfate samples collected from a dilution tube into which catalyzed vehicle exhaust was injected were found to contain significant quantities of ammonium sulfate in addition to sulfuric acid.
Technical Paper

Nox Reduction Catalysts for Vehicle Emission Control

1972-02-01
720480
IIEC efforts to develop NOx catalysts with improved durability have continued. Properties of several nickel oxide catalysts on pelleted, monolithic ceramic, and metallic supports are discussed and the engineering requirements for their effective use are defined. Some promoted nickel oxide, pelleted catalysts show good low-temperature activity, and produce minimal amounts of ammonia but are strongly deactivated by sulfur in the feed gas. Monolithic and metallic catalysts, on the other hand, although not active at temperatures below 1000 F, are very active at higher temperatures where deactivation by sulfur and ammonia formation are not troublesome.
Technical Paper

New Chemical Test for the Characterization of Organic Brake Linings — Pyrolytic Gas Chromatography

1967-02-01
670080
Pyrolytic gas chromatography (PGC) has been applied to the characterization of the organic constituents of brake linings. The test involves the pyrolysis of a sample followed by the instrumental separation and sensing of the products of decomposition. A study of experimental variables, such as pyrolysis temperature, has allowed the selection of conditions which yield excellent reproducibility and sensitivity. The preferred test conditions, which have been incorporated in Ford's brake lining quality control specifications, result in a relatively rapid, meaningful test for constancy of composition.
Technical Paper

Continuous Mass Spectrometric Determination of Nitric Oxide in Automotive Exhaust

1966-02-01
660116
Three techniques for the measurement of the oxides of nitrogen in automotive exhaust were evaluated. These included a “nitrous fume” analyzer, a gaseous NO2 colorimeter, and a movable mass spectrometer. All data obtained were compared to data from currently accepted wet chemical methods, the phenoldisulfonic acid and the “modified” Saltzman. Of the techniques evaluated, the mass spectrometer analysis of NO has been found to be the most useful for the study of nitrogen oxides in engine exhaust. The high cost of wet chemical analysis has indicated a need for an improved and continuous analytical method. The mass spectrometer approach measures NO within seconds of its discharge, thus minimizing any reactions prior to measurement.
Technical Paper

SCUFF-AND WEAR-RESISTANT CHEMICAL COATINGS

1947-01-01
470250
PROPER protection of metal parts operating as bearing surfaces, or in contact under relatively heavy loads, during the break-in period often means the difference between successful operation and failure. Various surface coatings have been investigated to discover which ones will give this protection. The authors discuss here three types of surface treatment for cast-iron and steel that do give superior wear and scuff resistance.
X