Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Journal Article

Development of a Detailed 3D Finite Element Model for a Lithium-Ion Battery Subject to Abuse Loading

2023-04-11
2023-01-0007
Lithium-ion batteries (LIBs) have been used as the main power source for Electric vehicles (EVs) in recent years. The mechanical behavior of LIBs subject to crush loading is crucial in assessing and improving the impact safety of battery systems and EVs. In this work, a detailed 3D finite element model for a commercial vehicle battery was built, in order to better understand battery failure behavior under various loading conditions. The model included the major components of a prismatic battery jellyroll, i.e., cathodes, anodes, and separators. The models for these components were validated against the corresponding material coupon tests (e.g., tension and compression). Then the components were integrated into the cell level model for simulation of jellyroll loading and damage behavior under three types of compressive indenter loading: (1) Flat-end punch, (2) Hemispherical punch and (3) Round-edge wedge. The comparisons showed reasonable agreement between modeling and experiments.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Journal Article

Estimation of Surface Temperature Distributions Across an Array of Lithium-Ion Battery Cells Using a Long Short-Term Memory Neural Network

2022-03-29
2022-01-0713
As electric vehicles are becoming increasingly popular and necessary for the future mobility needs of civilization, further effort is continually made to improve the efficiency, cost, and safety of the lithium-ion battery packs that power these vehicles. To facilitate these goals, this paper introduces a data driven model to predict a distribution of surface temperatures for a lithium-ion battery pack: a long short-term memory (LSTM) neural network. The LSTM model is trained and validated with lithium-ion cells electrically connected to form a battery pack. Voltage, current, state of charge (SOC), and cell surface temperature from two arrays are used as inputs from a wide range of high and low temperature drive cycles. Additionally, ambient temperature is added as an input to the LSTM model.
Technical Paper

Economic Impacts of Vehicle-to-Grid Technology implementation for the Consumers in Brazil

2022-02-04
2021-36-0068
This article aims to analyze the potential economic effects for consumers with the implementation of the Vehicle-to-Grid (V2G) and the Vehicle-to-Home (V2H) networks in Brazil. Nowdays, the usage of both technologies in Brazil are at a regulatory vacuum for both Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs). Usually, when a legislation lack occurs, the local OEMs adopt IECs (International Electrotechnical Commissions) and/or SAEs (Society of Automotive Engineers) reference international standards, such as SAE J1634 for range test.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Technical Paper

DC-Link Capacitor Sizing in HEV/EV e-Drive Power Electronic System from Stability Viewpoint

2020-04-14
2020-01-0468
Selection of the DC-link capacitance value in an HEV/EV e-Drive power electronic system depends on numerous factors including required voltage/current ratings of the capacitor, power dissipation, thermal limitation, energy storage capacity and impact on system stability. A challenge arises from the capacitance value selection based on DC-link stability due to the influence of multiple hardware parameters, control parameters, operating conditions and cross-coupling effects among them. This paper discusses an impedance-based methodology to determine the minimum required DC-link capacitance value that can enable stable operation of the system in this multi-dimensional variable space. A broad landscape of the minimum capacitance values is also presented to provide insights on the sensitivity of system stability to operating conditions.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
Technical Paper

Impacts of WLTP Test Procedure on Fuel Consumption Estimation of Common Electrified Powertrains

2019-04-02
2019-01-0306
The new European test procedure, called the worldwide harmonized light vehicle test procedure (WLTP), deviates in some details from the current NEDC-based test which will have an impact on the determination of the official EU fuel consumption values for the new vehicles. The adaptation to the WLTP faces automakers with new challenges for meeting the stringent EU fuel consumption and CO2 emissions standards. This paper investigates the main changes that the new test implies to a mid-size sedan electrified vehicle design and quantifies their impact on the vehicles fuel economy. Three common electrified powertrain architectures including series, parallel P2, and powersplit are studied. A Pontryagin’s Minimum Principle (PMP) optimization-based energy management control strategy is developed to evaluate the energy consumption of the electrified vehicles in both charge-depleting (CD) and charge-sustaining (CS) modes.
Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Technical Paper

Design of a SiC Based Variable Voltage Converter for Hybrid Electric Vehicle

2019-04-02
2019-01-0605
Variable Voltage Converter (VVC) is adopted in Power-Split structure of hybrid electric vehicles (HEVs) to optimize the Electric-Drive (e-Drive) system performance. With the wider availability of Silicon Carbide (SiC) power semiconductor for automotive applications, there are new opportunities to further optimize and improve performance of VVC, e.g. lower power loss, smaller size, and lighter weight, comparing to use traditional Silicon (Si) IGBT and diode. In this paper, a SiC based VVC is designed, prototyped, and evaluated. In order to maximize the benefits of SiC power devices in VVC application, each key component is carefully designed and selected, including SiC power module, power capacitor, and power inductor. The characterization and evaluation results demonstrate the benefits of advanced SiC devices in VVC design optimization, and such benefits quantified in this paper.
Technical Paper

Detection of Presence and Posture of Vehicle Occupants Using a Capacitance Sensing Mat

2019-04-02
2019-01-1232
Capacitance sensing is the technology that detects the presence of nearby objects by measuring the change in capacitance. A change in capacitance is triggered either by a change in dielectric constant, area of overlap or distance of separation between the electrodes of the capacitor. It is a technology that finds wide use in applications such as touch screens, proximity sensing etc. Drawing motivation from such applications, this paper investigates how capacitive sensing can be employed to detect the presence and posture of occupants inside vehicles. Compared to existing solutions, the proposed approach is low-cost, easy to deploy and highly efficient. The sensing system consists of a capacitance-sensing mat that is embedded with copper foils and an associated sensing circuitry. Inside the mat the foils are arranged in rows and columns to form several touch-nodes across the surface of the mat.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

Fidelity Enhancement of Power-Split Hybrid Vehicle HIL (Hardware-in-the-Loop) Simulation by Integration with High Voltage Traction Battery Subsystem

2018-04-03
2018-01-0008
Due to the increasing concerns on energy and environmental issues, the automotive industry has seen increased growth and development of electric and electrified vehicles [1]. The power-split design is one of the most common drivetrain configurations of a hybrid or electrified vehicle. The propulsion system of a power-split hybrid vehicle typically comprises of an engine drive system in which the engine, drivetrain and generator are mechanically coupled on a planetary gear set driveline while the electric drive system consists of a high voltage battery and a traction motor [2]. In recent years, Hardware-in-the-Loop (HIL) simulation has become an increasingly common approach for controls rapid prototyping and validation as part of the automotive product development cycle [2, 3].
Technical Paper

Experimental and Numerical Studies of Bowl Geometry Impacts on Thermal Efficiency in a Light-Duty Diesel Engine

2018-04-03
2018-01-0228
In light- and medium-duty diesel engines, piston bowl shape influences thermal efficiency, either due to changes in wall heat loss or to changes in the heat release rate. The relative contributions of these two factors are not clearly described in the literature. In this work, two production piston bowls are adapted for use in a single cylinder research engine: a conventional, re-entrant piston, and a stepped-lip piston. An injection timing sweep is performed at constant load with each piston, and heat release analyses provide information about thermal efficiency, wall heat loss, and the degree of constant volume combustion. Zero-dimensional thermodynamic simulations provide further insight and support for the experimental results. The effect of bowl geometry on wall heat loss depends on injection timing, but changes in wall heat loss cannot explain changes in efficiency.
X