Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Journal Article

Game Theory-Based Modeling of Multi-Vehicle/Multi-Pedestrian Interaction at Unsignalized Crosswalks

2022-03-29
2022-01-0814
The improvement of road transport safety requires the development of advanced vehicle safety systems, whose development could be facilitated by using complex interaction models of different road users. To this end, this paper deals with the modeling of multi-vehicle/multi-pedestrian interactions at unsignalized crosswalks. This multi-agent modeling approach extends on the existing basic model covering only single-vehicle/single-pedestrian interactions. The basic model structure and parameters have remained the same, as it was previously experimentally calibrated and thoroughly verified. The proposed modeling procedure employs the basic model within the multi-agent setting based on its application to relevant single-vehicle and single-pedestrian pairs. The resulting, so-called pre-decisions are then used for making final crossing decisions in a current time step for each agent.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Technical Paper

Cast Magnesium Subframe Development - Bolt Load Retention

2021-04-06
2021-01-0274
A cast magnesium subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets. All the joints of the magnesium subframe were tested for bolt load retention. The tests were conducted with a temperature profile of 100°C to -30°C designed to investigate the creep behavior of the selected magnesium alloy AE44 under high stress.
Technical Paper

Assessing the Impacts of Dedicated CAV Lanes in a Connected Environment: An Application of Intelligent Transport Systems in Corktown, Michigan

2021-04-06
2021-01-0177
The interaction of Connect and Automated vehicles (CAV) with regular vehicles in the traffic stream has been extensively researched. Most studies, however, focus on calibrating driver behavior models for CAVs based on various levels of automation and driver aggressiveness. Other related studies largely focus on the coordination of CAVs and infrastructure like traffic signals to optimize traffic. However, the effects of different strategic flow management of CAVs in the traffic stream in the comparative scenario-based analysis is understudied. Thus, this study develops a framework and simulations for integrating CAVs in a corridor section. We developed a calibrated model with CAVs for a corridor section in Corktown, Michigan, and simulate how dedicated CAV lane operations can be implemented without significant change in existing infrastructure.
Journal Article

Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating

2021-04-06
2021-01-0163
Autonomous vehicles are expected to change our lives with significant applications like on-demand, shared autonomous taxi operations. Considering that most vehicles in a fleet are parked and hence idle resources when they are not used, shared on-demand services can utilize them much more efficiently. While ride hailing of autonomous vehicles is still very costly due to the initial investment, a shared autonomous vehicle fleet can lower its long-term cost such that it becomes economically feasible. This requires the Shared Autonomous Vehicles (SAV) in the fleet to be in operation as much as possible. Motivated by these applications, this paper presents a simulation environment to model and simulate shared autonomous vehicles in a geo-fenced urban setting.
Technical Paper

Corrosion Performance of a Magnesium Tower Brace

2021-04-06
2021-01-0276
This study reports the corrosion performance of three different coating strategies tested on an AE44 high performance magnesium strut tower brace used on the 2020 Ford Mustang Shelby GT500. The alloy was selected due to its improved structural performance at higher temperatures over conventional AM60B magnesium die castings. The first coating strategy used no pretreatment, conversion coating, or topcoat to gage the baseline corrosion performance of the uncoated alloy. The second coating strategy used a conventional pretreatment commonly used on AM60B alloy. The third used a ceramic-based conversion coating. A textured (stipple) powder coat was then applied to the two non-baseline parts over the pretreatment. All three coating strategies were then evaluated by comparing the corrosion performance after cyclic corrosion testing for 12 weeks using the Ford L-467 test.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Journal Article

Towards Design of Sustainable Smart Mobility Services through a Cloud Platform

2020-04-14
2020-01-1048
People and their communities are looking for transportation solutions that reduce travel time, improve well-being and accessibility, and reduce emissions and traffic congestion. Although new mobility services like ride-hailing advertise improvements in these areas, closer inspection has revealed a discrepancy between industry claims and reality. Key decision-makers, including citizens, cities and enterprise, and mobility service providers have the opportunity to leverage connected vehicle and connected device data through cloud-based APIs. We propose a GHG data analytics framework that functions on top of a cloud platform to provide unique system-level perspectives on operating transportation services, from procuring the most environmentally and people friendly vehicles to scheduling and designing the services based on data insights.
Journal Article

Unified Power-Based Vehicle Fuel Consumption Model Covering a Range of Conditions

2020-04-14
2020-01-1278
Previously fuel consumption on a drive cycle has been shown to be proportional to traction work, with an offset for powertrain losses. This model had different transfer functions for different drive cycles, performance levels, and applied powertrain technologies. Following Soltic it is shown that if fuel usage and traction work are both expressed in terms of cycle average power, a wide range of drive cycles collapse to a single transfer function, where cycle average traction power captures the drive cycle and the vehicle size. If this transfer function is then normalized by weight, i.e. by working in cycle average power/weight (P/W), a linear model is obtained where the offset is mainly a function of rated performance and applied technology. A final normalization by rated power/weight as the primary performance metric further collapses the data to express the cycle average fuel power/rated power ratio as a function of cycle average traction power/rated power ratio.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Ignition Switch Material Definition to Avoid Hard to Start Issue

2020-01-13
2019-36-0138
Nowadays, develop and launch a new product in the market is hard to every company. When we talk about a launch new vehicle to the customers, this task could be considered more difficult than other products whether imagine how fast the technology should be integrated to vehicle. There are main pillars to be considered in this scenario: low cost, design, innovation, competitiveness and safety. Whereas Brazilian economic scenario, all OEM has to be aware to opportunity to make the product profitable and keep acceptable quality. This combination between low cost and quality could be broken or not distributed equally between the pillars. Based on that, in some cases could have a quality broken that will affect directly the customer. This paper will focus on project to define of the new ignition switch, when the main challenge to achieve the cost reduction target was defined to change a material to electrical terminals.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
X