Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Electric Power Assisted Steering System in Vehicle Level CAE Simulation

2022-03-29
2022-01-0779
The steering system is to provide the driver with the possibility of lateral vehicle guidance, i.e. to influence the lateral dynamics of the vehicle; moreover, it is crucial to promptly translate the steering input to have the vehicle in high-quality directional stability. An electrical power assisted steering (EPAS) system is the sophisticated variant to meet higher requirements for vehicle safety, ride comfort, and driver-assist. This research is to investigate if a CAE methodology could be innovated to better simulate the durability of a steering system under various working scenarios; figure out the critical features of the modeling; conduct a correct analysis procedure for validating the modeling and collecting data for evaluation. With step by step in modeling and analysis, a well-established example of CAE model of EPAS is enabled to highlight the novelty of steering vehicle level CAE methodology and therefore achieve the research goal.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Technical Paper

Evaluation of Voice Biometrics for Identification and Authentication

2021-04-06
2021-01-0262
The work presented here is part of the research done in the field of voice biometrics. This paper helps to understand the state-of-the-art in speaker recognition technology potentially capable of solving challenges related to speaker identification (to identify a speaker among multiple speakers) and speaker verification/authentication (to recognize the current speaking person at a pre-defined access level and authenticate accordingly). The research was focused on performing an unbiased evaluation of two individual voice biometric services. The level of accuracy in identifying and authenticating individuals using these services provides an insight into the current state of technology and the state of what other dual authentication methods could be used to achieve a desired True Acceptance Rate (TAR) and False Acceptance Rates (FAR).
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Technical Paper

Multi-Objective Restraint System Robustness and Reliability Design Optimization with Advanced Data Analytics

2020-04-14
2020-01-0743
This study deals with passenger side restraint system design for frontal impact and four impact modes are considered in optimization. The objective is to minimize the Relative Risk Score (RRS), defined by the National Highway Traffic Safety Administration (NTHSA)'s New Car Assessment Program (NCAP). At the same time, the design should satisfy various injury criteria including HIC, chest deflection/acceleration, neck tension/compression, etc., which ensures the vehicle meeting or exceeding all Federal Motor Vehicle Safety Standard (FMVSS) No. 208 requirements. The design variables include airbag firing time, airbag vent size, inflator power level, retractor force level. Some of the restraint feature options (e.g., some specific features on/off) are also considered as discrete design variables. Considering the local variability of input variables such as manufacturing tolerances, the robustness and reliability of nominal designs were also taken into account in optimization process.
Journal Article

Axle Efficiency Comparison Method and Spin Loss Benefit of Front Axle Disconnect Systems

2020-04-14
2020-01-1412
There are a variety of test protocols associated with vehicle fuel economy and emissions testing. As a result, a number of test protocols currently exist to measure axle efficiency and spin loss. The intent of this technical paper is to describe a methodology that uses a singular axle efficiency and spin loss procedure. The data can then be used to predict the effects on vehicle FE and GHG for a specific class of vehicles via simulation. An accelerated break-in method using a comparable energy approach has been developed, and can be used to meet the break-in requirements of different vehicle emission test protocols. A “float to equilibrium” sump temperature approach has been used to produce instantaneous efficiency data, which can be used to more accurately predict vehicle FE and GHG, inclusive of Cold CO2. The “Float to Equilibrium” approach and “Fixed Sump Temperature” approach has been compared and discussed.
Technical Paper

The effects of contamination on commercial trucks rear suspension springs durability

2020-01-13
2019-36-0083
On current competitive scenario for road load transportation in Brazilian market, the operational costs should be reduced as much as possible. The suspension system commonly used on road commercial trucks is based on leaf spring use and Hotchkiss concept for axle locating devices. The use of leaf springs without bolt attachment eyelets are still common for rear suspension systems. When using the leaf spring with direct contact to the brackets, wear plates are placed between them to work as wear elements due to the friction between the parts. The friction will cause wear on the parts, and the wear plate is designed to suffer the damages of this friction instead of the leaf spring, being the cheapest element and can be easily replaced. When the system works on a severe contamination environment with high levels of grit and dirt, the degradation of the parts are accelerated.
Technical Paper

SAE J3168: A Joint Aerospace-Automotive Recommended Practice for Reliability Physics Analysis of Electrical, Electronic and Electromechanical Components

2019-04-02
2019-01-1252
This paper describes a joint SAE automotive and aerospace Recommended Practice SAE J3168 now in development to standardize a process for Reliability Physics Analysis. This is a science-based approach to implement Physics-of-Failure research in conducting durability simulations in a Computer Aided Engineering Environment. It is used to calculate failure mechanism susceptibilities and estimate the likelihood of failure and the expected durability life of Electrical, Electronic and Electromechanical components and equipment, due to stresses such as mechanical shock, vibration, temperature cycling, etc. Reliability Physics Analysis is based on the material science principle of stress driven damage accumulation in materials. The process enables the identification of potential failure risks early in the design phase so that such risks can be designed out in order to efficiently design high reliable and robustness into electronic products.
Technical Paper

Closures weatherstrips with variable cross sections

2018-09-03
2018-36-0152
Closures systems performance is a trade-off between NVH (Noise, Vibration and Harshness) and DCE (Door Closing Efforts) requirements. Dynamic sealing performance and sheet metal rigidity are the key contributors for a stable system. The seals actuate like a spring on the system. Higher seal load is good for NVH performance, adding more dumping to the system, but it will negatively affect DCE, as it will demand additional energy to close the system. Nominal seal load must be defined to achieve a balance between these attributes. This study is about dynamic sealing profiles with variable seal load, which provides tunable solutions to address the trade-off between NVH and DCE on the side doors or rear closures. Dynamic sealing weatherstrips are made of sponge EPDM extruded profiles with a specified load, defined by its CLD (Compression Load Deflection), which is given by the cross section design.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

2018-04-03
2018-01-0062
There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Technical Paper

Driver Identification Using Multivariate In-vehicle Time Series Data

2018-04-03
2018-01-1198
All drivers come with a driving signature during a driving. By aggregating adequate driving data of a driver via multiple driving sessions, which is already embedded with driving behaviors of a driver, driver identification task could be treated as a supervised machine learning classification problem. In this paper, we use a random forest classifier to implement the classification task. Therefore, we collected many time series signals from 60 driving sessions (4 sessions per driver and 15 drivers totally) via the Controller Area Network. To reduce the redundancy of information, we proposed a method for signal pre-selection. Besides, we proposed a strategy for parameters tuning, which includes signal refinement, interval feature extraction and selection, and the segmentation of a signal. We also explored the performance of different types of arrangement of features and samples.
Technical Paper

Calculating System Failure Rates Using Field Return Data. Application of SAE-J3083 for Functional Safety and Beyond

2018-04-03
2018-01-1074
In early design activities (typically before the hardware is built), a reliability prediction is often required for the electronic components and systems in order to assess their future reliability and in many cases to meet customer specifications. These specifications may include the allocated reliability for a particular electronic unit and in the cases of functional safety products to meet the ASIL (Automotive Safety and Integrity Level) requirement specified by the functional safety standard ISO 26262. The standard allows for the use of “statistics based on field returns or tests” as a valid alternative to the handbook-based reliability prediction. This paper presents a newly developed SAE-J3083 standard “Reliability Prediction for Automotive Electronics Based on Field Return Data”, which covers the types of the required data, ways to collect it, and the methodology of how to process this data to calculate the failure rates and meet the expected safety goals.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

2017-11-07
2017-36-0294
In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.
Technical Paper

New FR Lower Spring Pad Design to Avoid Squeak Noise During Suspension Travel

2017-11-07
2017-36-0238
During a B-Car durability validation route, it was observed a squeak noise coming from front suspension structure. In the teardown, it was verified metal to metal contact between coil spring and damper spring plate and squeeze-out of spring pad. To reproduce the vehicle failure, it was developed in laboratory a fixture and test to reflect a B-Car McPherson suspension motion, to reproduce the failure and validate a proposal. After root cause understanding, the challenge was to design a new spring pad to avoid squeeze-out keeping the coil spring lower pigtail unchanged. It was tested some prototype parts also in vehicle to approve the design proposal.
Technical Paper

Frequency FE-Based Weld Fatigue Life Prediction of Dynamic Systems

2017-03-28
2017-01-0355
In most aspects of mechanical design related to a motor vehicle there are two ways to treat dynamic fatigue problems. These are the time domain and the frequency domain approaches. Time domain approaches are the most common and most widely used especially in the automotive industries and accordingly it is the method of choice for the fatigue calculation of welded structures. In previous papers the frequency approach has been successful applied showing a good correlation with the life and damage estimated using a time based approach; in this paper the same comparative process has been applied but now extended specifically to welded structures. Both the frequency domain approach and time domain approach are used for numerically predicting the fatigue life of the seam welds of a thin sheet powertrain installation bracketry of a commercial truck submitted to variable amplitude loading. Predicted results are then compared with bench tests results, and their accuracy are rated.
Technical Paper

A Method for Rapid Durability Test Development

2017-03-28
2017-01-0199
Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
X