Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

CFD Simulation of Oil Jets for Piston Cooling Applications Comparing the Level Set and the Volume of Fluid Method

2019-04-02
2019-01-0155
A new CFD simulation model and methodology for oil jet piston cooling has been developed using the modern level set approach. In contrast to the widely used volume of fluid (VOF) method, the level set approach explicitly tracks the interface surface between oil and air, using an additional field equation. The method has been extensively tested on two- and three-dimensional examples using results from literature for comparison. Furthermore, several applications of oil jet piston cooling on Ford engines have been investigated and demonstrated. For example, three-dimensional simulations of piston cooling nozzle jets on a diesel engine have been calculated and compared to test-rig measurements. Laminar jets, as well as jets with droplets and fully atomized jets, have been simulated using realistic material properties, surface tension, and gravity.
Technical Paper

Investigation into Occurrence of Megaknock and Auto-Ignition in GTDI Engines

2017-03-28
2017-01-0690
The performance of boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition, and Megaknock. An investigation has been carried out on the occurrence of abnormal combustion and megaknock in a 1.6 L GTDI engine with the aim to determine the causes of such phenomena. A classification of abnormal combustion events and causes is presented in order to facilitate a consistent terminology. The experiments specifically focus on the effects of exhaust residual gas on occurrence of megaknock in multi-cylinder engines. The results showed that while a misfire will not lead to megaknock, a very late combustion in one cycle, in one cylinder may lead to megaknock in the following cycle in the same or adjacent cylinder. Additionally, a recently developed multi-zone model was used to analyze the role of residual gas on auto-ignition.
X