Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Technical Paper

Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies

2019-09-09
2019-24-0007
Methanol is a genuine candidate on the alternative fuel market for internal combustion engines, especially within the heavy-duty transportation sector. Partially premixed combustion (PPC) engine concept, known for its high efficiency and low emission rates, can be promoted further with methanol fuel due to its unique thermo-physical properties. The low stoichiometric air to fuel ratio allows to utilize late injection timings, which reduces the wall-wetting effects, and thus can lead to less unburned hydrocarbons. Moreover, combustion of methanol as an alcohol fuel, is free from soot emissions, which allows to extend the operation range of the engine. However, due to the high latent heat of vaporization, the ignition event requires a high inlet temperature to achieve ignition event. In this paper LES simulations together with experimental measurements on an heavy-duty optical engine are used to study methanol PPC engine.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Optical Investigation on the Combustion Process Differences between Double-Pilot and Closely-Coupled Triple-Pilot Injection Strategies in a LD Diesel Engine

2019-01-15
2019-01-0022
The combustion processes of three injection strategies in a light-duty (LD) diesel engine at a medium load point are captured with a high speed video camera. A double-pilot/main/single-post injection strategy representative of a LD Euro 6 calibration is considered as the reference. There is a modest temporal spacing (dwell) after the first pilot (P1) and second pilot (P2). A second strategy, “A,” adds a third pilot (P3). The dwell after both P2 and P3 are several times shorter than in the reference strategy. A third strategy, “B,” further reduces all dwells. Each injection has its own associated local peak in the heat release rate (HRR) following some ignition delay. Between these peaks lie local minima, or dips. In all three cases, the fuel from P1 combusts as a propagating premixed flame. For all strategies, the ignition of P2 primarily occurs at its interface with the existing combustion regions.
Journal Article

NOx-Conversion Comparison of a SCR-Catalyst Using a Novel Biomimetic Effervescent Injector on a Heavy-Duty Engine

2019-01-15
2019-01-0047
NOx pollution from diesel engines has been stated as causing over 10 000 pre-mature deaths annually and predictions are showing that this level will increase [1]. In order to decrease this growing global problem, exhaust after-treatment systems for diesel engines have to be improved, this is especially so for vehicles carrying freight as their use of diesel engines is expected to carry on into the future [2]. The most common way to reduce diesel engine NOx out emissions is to use SCR. SCR operates by injecting aqueous Urea solution, 32.5% by volume (AUS-32), that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths.
Technical Paper

Optical Study of Fuel Spray Penetration and Initial Combustion Location under PPC Conditions

2017-03-28
2017-01-0752
Low temperature combustion modes, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), have been researched over recent decades since the concepts show promise for high efficiency and low emissions compared to conventional diesel combustion. PPC is an intermediate combustion type ranging from HCCI-like combustion to diesel-like combustion. The purpose of this paper is to study optically how the combustion and ignition are affected by different start of injection (SOI) timings. The study is carried out in an optically accessible heavy-duty single-cylinder engine with swirl. The intake pressure was kept constant while the intake temperature was varied to keep the combustion phasing (CA50) constant at ∼3 CAD atdc during an SOI sweep. The fuel used is a mix of primary reference fuels with octane number 81. To determine where the combustion starts, high-speed combustion imaging is used to detect the natural luminosity.
Technical Paper

Comparison of Laser-Extinction and Natural Luminosity Measurements for Soot Probing in Diesel Optical Engines

2016-10-17
2016-01-2159
Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Technical Paper

NOx-Conversion and Activation Temperature of a SCR-Catalyst Whilst Using a Novel Biomimetic Flash-Boiling AdBlue Injector on a LD Engine

2016-10-17
2016-01-2212
Yearly 3.3 million premature deaths occur worldwide due to air pollution and NOx pollution counts for nearly one seventh of those [1]. This makes exhaust after-treatment a very important research and has caused the permitted emission levels for NOx to decrease to very low levels, for EURO 6 only 0.4 g/kWh. Recently new legislation on ammonia slip with a limit of 10 ppm NH3 has been added [2], which makes the SCR-technology more challenging. This technology injects small droplets of an aqueous Urea solution into the stream of exhaust gases and through a catalytic reaction within the SCR-catalyst, NOx is converted into Nitrogen and Water. To enable the catalytic reaction the water content in the Urea solution needs to be evaporated and the ammonia molecules need to have sufficient time to mix with the gases prior to the catalyst.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

2008-10-06
2008-01-2385
An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
X