Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Automated Fabrication for Low-Volume Applications

2020-12-08
2020-01-5103
Currently, the dominant technology used in the manufacture of mass-market automobile structures is sheet-metal stamping because of its suitability for producing accurate, strong, durable components in large quantities [1]. While cost-effective and fast for high-volume applications, the cost of manufacturing stamping dies is difficult to profitably amortize over a low-volume product in any but the most high-priced vehicle segments. This study examines the application of automated fabrication technologies as an alternative to stamping for the production of low-volume body structure components, including the impacts on both design and performance.
Technical Paper

Simplified Approach for Formability Simulation of Automotive Body Structures

2001-10-16
2001-01-3048
This paper presents a simplified approach for formability simulation of automotive body structural sections in the early design stage of vehicle development process. Plane strain approach is investigated for its applicability and accuracy by comparing the analytical results with the measured results of automotive body side panel. The plane strain approach was tried based on the fact that for a certain section location of a stamped panel, the minor strains are relatively small and negligible compared to the major strains. The state of plane strain can be induced mainly through symmetry and applied boundary conditions. This approach is both cost effective and time saving for analyzing sheet metal formability in early vehicle development stage, since only few sections of the entire panel need be analyzed.
Technical Paper

Influence of Strain State on Powdering of Galvannealed Sheet Steel

1996-02-01
960026
Galvanneal powdering was examined on a stabilized ultra low carbon steel substrate as a function of strain state using cup drawing and in-plane stretching experiments to simulate deformations encountered in production stampings. Significant powdering was encountered in drawing while minimal powdering occurred in in-plane stretching. Powdering was measured at specific locations and correlated with strains in those locations. A powdering map was generated in strain space using the experimental data. A few measurements of powdering on selected regions of an automotive stamped part are reported.
Technical Paper

Objective Characterization of Vehicle Brake Feel

1994-03-01
940331
Historically, vehicle brake feel has usually been evaluated in a subjective manner. If an objective measure was used, it was pedal force versus the deceleration rate of the vehicle. Stopping distance is almost always used to characterize vehicle braking performance by the automotive press. This represents limit braking performance, but ignores braking performance under normal driving conditions experienced by customers most of the time. Evaluation of pedal feel by the press is generally limited to subjective adjectives such as “mushy”, “positive”, and “responsive”. A method will be presented, which is being used by General Motors, to translate customer brake feel expectations into objective performance metrics. These metrics are correlated to actual subjective ratings and are used to set objective, measurable requirements for performance.
Technical Paper

Sheet Steel Surface Treatments for Enhanced Formability

1994-03-01
940945
Surface friction is an important characteristic which influences the formability of sheet steel products. Numerous friction tests have been developed, and many previous investigations have reported effects of surface characteristics, coatings, lubrication, etc., on formability. Recently, increased attention has been focussed on reducing friction via the application of solid film lubricants or special surface post-treatments such as phosphates, metallics/intermetallics, etc. This paper presents the results of selected laboratory evaluations conducted using a variety of steels and surface treatments. Formability was measured using Limiting Dome Height and Drawbead Simulator friction testing, along with Limiting Draw Ratio testing in one instance. The examples highlight some potential opportunities which may be considered for improving formability in industrial stamping operations.
Technical Paper

Recent Progress in the Development of Forming Limit Curves for Automotive Sheet Steels

1992-02-01
920437
Forming Limit Diagrams (FLD) are extensively used in North American press shops during tooling trials and in production for problem identification/resolution. The Keeler-Goodwin FLC shape and the correlation developed by Keeler and Brazier (based on n-value and thickness) have been widely accepted as the Standard FLC Method to predict forming limit curves for commercial steels. In this paper, the Standard FLC Method is reviewed, and an alternative approach used at the authors' laboratory (Bethlehem FLC Method) is described. The two methods are discussed in the context of more recent experimental determinations of FLC's for a variety of “modern” sheet steels including DQSK, Interstitial Free and Bake-Hardening steels, as well as coated sheet products. Some specific press-shop examples are also presented, which further highlight the value to industry of re-examining the Standard FLC Methodology used in circle-grid analysis.
X