Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Mapless Trajectory Prediction Model with Enhanced Temporal Modeling

2024-04-09
2024-01-2874
The prediction of agents' future trajectory is a crucial task in supporting advanced driver-assistance systems (ADAS) and plays a vital role in ensuring safe decisions for autonomous driving (AD). Currently, prevailing trajectory prediction methods heavily rely on high-definition maps (HD maps) as a source of prior knowledge. While HD maps enhance the accuracy of trajectory prediction by providing information about the surrounding environment, their widespread use is limited due to their high cost and legal restrictions. Furthermore, due to object occlusion, limited field of view, and other factors, the historical trajectory of the target agent is often incomplete This limitation significantly reduces the accuracy of trajectory prediction. Therefore, this paper proposes ETSA-Pred, a mapless trajectory prediction model that incorporates enhanced temporal modeling and spatial self-attention.
Technical Paper

Proposal for Relaxation of Airspace Restrictions Based on Flight-Continuation Possibility of UAVs in Event of Failure

2024-03-05
2024-01-1912
The flight area of drones and other unmanned aerial vehicles (UAVs) had been highly restricted but has been relaxing, including flights beyond the scope of sight. Deregulation without aircraft-reliability improvement increases the risk of accidents. However, demanding high reliability for all aircraft leads to an increase in the price of the aircraft. Therefore, if airspace restrictions are relaxed for more reliable aircraft, the cost of higher reliability and its benefits can be balanced. This will improve efficiency and optimize cost-effectiveness. The purpose of this proposal is to balance the cost of aircraft-reliability improvement (which allows flight to continue in the event of a failure) and its advantages. Specifically, the author proposes rules that apply more relaxed airspace restrictions to UAVs with higher FCLs (Flight Continuity Possibility Levels) and stricter airspace restrictions to those with lower FCLs.
Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Harshness Improvement in Mid-Size Trucks

2024-01-08
2023-36-0082
Ride comfort is a critical factor to customer perception of vehicle quality as it is related to vehicle experience when driving. It adds value to the product and, consequently, to vehicle brand. It has become a demand not only for passenger unibody vehicles but also to larger segments including mid-size trucks. Ride quality is usually quantified as harshness which is a measure of how the vehicle transmits the road irregularities to the customer at the tactile points such as the steering wheel and seats. Improving harshness requires tuning of different parts including tires, chassis frame/subframe and suspension mounts and bushings. This paper describes the methodology to enhance the harshness performance for a mid-size truck using a full vehicle CAE model. The influence of stiffnesses of body mounts and control arms bushings to harshness response is investigated through sensitivity analysis and the optimal configuration is found.
Technical Paper

A SOM-Based Trajectory Planning Analysis Method for Intelligent Groups System

2023-12-31
2023-01-7107
Aiming at the problem of weak communication, strong interference, cross-domain, and large-scale environment, it is difficult to achieve efficient decision-making and planning in the collaborative operation of intelligent groups. Based on the SOM algorithm, this paper proposes a dual-selection allocation and distributed vectorized trajectory planning. Form a collaborative planning algorithm that can be updated with high frequency and a rational decision-making mechanism. Provide technical support for collaborative search and detection of intelligent groups. At the same time, based on the principle of minimum consistency, this paper proposes a clock synchronization model under spatial coordination and conducts simulation experiments to verify it. The result proves the efficiency and practicability of the collaborative intelligent decision-making plan proposed in this paper.
Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

A Kinetic Modeling and Engine Simulation Study on Ozone-Enhanced Ammonia Oxidation

2023-10-31
2023-01-1639
Ammonia has attracted the attention of a growing number of researchers in recent years. However, some properties of ammonia (e.g., low laminar burning velocity, high ignition energy, etc.) inhibit its direct application in engines. Several routes have been proposed to overcome these problems, such as oxygen enrichment, partial fuel cracking strategy and co-combustion with more reactive fuels. Improving the reactivity of ammonia from the oxidizer side is also practical. Ozone is a highly reactive oxidizer which can be easily and rapidly generated through electrical plasma and is an effective promoter applicable for a variety of fuels. The dissociation reaction of ozone increases the concentration of reactive radicals and promotes chain-propagating reactions. Thus, obtaining accurate rate constants of reactions related to ozone is necessary, especially at elevated to high pressure range which is closer to engine-relevant conditions.
Technical Paper

A Novel Approach to Constructing Reactivity-Based Simplified Combustion Model for Dual Fuel Engine

2023-10-31
2023-01-1627
To achieve higher efficiencies and lower emissions, dual-fuel strategies have arisen as advanced engine technologies. In order to fully utilize engine fuels, understanding the combustion chemistry is urgently required. However, due to computation limitations, detailed kinetic models cannot be used in numerical engine simulations. As an alternative, approaches for developing reduced reaction mechanisms have been proposed. Nevertheless, existing simplified methods neglecting the real engine combustion processes, which is the ultimate goal of reduced mechanism. In this study, we propose a novel simplified approach based on fuel reactivity. The high-reactivity fuel undergoes pyrolysis first, followed by the pyrolysis and oxidation of the low-reactivity fuel. Therefore, the simplified mechanism consists of highly lumped reactions of high-reactivity fuel, radical reactions of low-reactivity fuel and C0-C2 core mechanisms.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Application of a Machine Learning Approach for Selective Catalyst Reduction Catalyst 3D-CFD Modeling: Numerical Method Development and Experimental Validation

2023-08-28
2023-24-0014
Internal combustion engines (ICEs) exhaust emissions, particularly nitrogen oxides (NOx), have become a growing environmental and health concern. The biggest challenge for contemporary ICE industry is the development of clean ICEs, and the use of advanced design tools like Computational Fluid Dynamics (CFD) simulation is paramount to achieve this goal. In particular, the development of aftertreatment systems like Selective Catalyst Reduction (SCR) is a key step to reduce NOx emissions, and accurate and efficient CFD models are essential for its design and optimization. In this work, we propose a novel 3D-CFD methodology, which uses a Machine Learning (ML) approach as a surrogate model for the SCR catalyst chemistry, which aims to enhance accuracy of the simulations with a moderate computational cost. The ML approach is trained on a dataset generated from a set of 1D-CFD simulations of a single channel of an SCR catalyst.
Technical Paper

Weak Supervised Hierarchical Place Recognition with VLAD-Based Descriptor

2022-12-22
2022-01-7099
Visual Place Recognition (VPR) excels at providing a good location prior for autonomous vehicles to initialize the map-based visual SLAM system, especially when the environment changes after a long term. Condition change and viewpoint change, which influences features extracted from images, are two of the major challenges in recognizing a visited place. Existing VPR methods focus on developing the robustness of global feature to address them but ignore the benefits that local feature can auxiliarily offer. Therefore, we introduce a novel hierarchical place recognition method with both global and local features deriving from homologous VLAD to improve the VPR performance. Our model is weak supervised by GPS label and we design a fine-tuning strategy with a coupled triplet loss to make the model more suitable for extracting local features.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Development of High Frequency Response Battery and Enhancement of Power Density for Inverter

2021-04-06
2021-01-0753
We propose low inductance batteries and enhance power density for a inverter. Conventionally, the capacitors are used for smoothing ripple of the inverter. The low inductance battery which responds at carrier frequency of inverter can reduce the capacity of the smoothing capacitors and enable to enhance power density for the inverter. For reducing the inductance, it is necessary to separately understand the impact of electrochemical reaction under wide range of assumed conditions and structural reaction on frequency characteristics. Furthermore, it is also necessary to design the low inductance batteries based on combining the both of characteristics. However, there are no study focusing on modeling by combining such different domains. Therefore, we made original inductance model inside battery considering frequency characteristics among all materials and structural influence with electromagnetic field analysis simulator.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Unmanned Terminal Vehicle Positioning System Based on Roadside Single-Line Lidar

2021-03-02
2021-01-5029
With the development of economic globalization, the speed of development of container terminals is also very rapid. Under the pressure brought by the surge in throughput, the unmanned and intelligent terminals will become the future development direction of terminals. As the cornerstone of the unmanned terminal, the positioning technology provides the most basic position information for system scheduling, path planning, real-time correction, and loading and unloading. Therefore, this paper is aimed to design a low-cost, high-precision, and easy-to-maintain unmanned dock positioning system in order to better solve the problem of unmanned dock positioning. The main research content of this paper is to design a positioning algorithm for unmanned terminal Automated Guided Vehicle (AGV) based on single-line lidar, including point cloud data acquisition, background filtering, point cloud clustering, vehicle position extraction, and result optimization.
Technical Paper

A Multimodal States Based Vehicle Descriptor and Dilated Convolutional Social Pooling for Vehicle Trajectory Prediction

2021-01-13
2020-01-5113
Precise trajectory prediction of surrounding vehicles is critical for decision-making of autonomous vehicles, and learning-based approaches are well recognized for the robustness. However, state-of-the-art learning-based methods ignore (1) the feasibility of the vehicle’s multimodal state information for prediction and (2) the mutually exclusive relationship between the global traffic scene receptive fields and the local position resolution when modeling vehicles’ interactions, which may influence prediction accuracy. Therefore, we propose a “vehicle descriptor”-based long short-term memory (LSTM) model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Technical Paper

A Game Theory-Based Model Predictive Controller Considering Intension for Mandatory Lane Change

2020-12-30
2020-01-5127
In recent years, with the increase of traffic accidents and traffic jams, lane change, as one of the most important and commonly automatic driving operations for autonomous vehicles, is receiving attention in academia. It is considered to be one of the important solutions that play an important role in improving road traffic safety and efficiency. However, most existing lane-changing models are rule-based lane-changing models. These models only assume a one-direction impact of surrounding vehicles on the lane-changing vehicle. In fact, lane change is a process of mutual interaction between vehicles due to the complexity and uncertainty of the traffic environment. Moreover, the safety and efficiency of existing lane-changing decision algorithms need to be improved. In this paper, we proposed a multivehicle cooperative control approach with a distributed control structure to control the model.
Technical Paper

Research on Subjective Rating Prediction Method for Ride Comfort with Learning

2020-09-30
2020-01-1566
Suspension is an important chassis part which is vital to ride comfort [1]. However, it is difficult to achieve our targeted comfortability level in a short time. Therefore, improving efficiency of damper development is our primary challenge. We have launched a project which aims to reduce the workload on developing dampers by introducing analytical approaches to the improvement of ride comfort. To be more specific, we have been putting effort into developing the damping force prediction, the vehicle dynamics prediction and subjective rating prediction. This paper describes subjective rating prediction method which output a subjective rating corresponding to the physical value of the vehicle dynamics with deep learning. As a result of verification using objective data which was not used for learning process, DNN (Deep Neural Network) prediction method could fairly precisely predict subjective rating of the expert driver.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
X